

Government of Nepal National Reconstruction Authority

Singhadurbar, Kathmandu

HOLLOW CONCRETE BLOCKS MANUAL for LOAD BEARING STRUCTURES

houses that have been built under the HOUSING RECONSTRUCTION PROGRAMME

for

Copyright:National Reconstruction AuthorityVersion :February 2019Printed copy:1000 pcs

HOLLOW CONCRETE BLOCKS MANUAL for LOAD BEARING STRUCTURES

for houses that have been built under the HOUSING RECONSTRUCTION PROGRAMME

Government of Nepal National Reconstruction Authority

Singhadurbar, Kathmandu

This Page is Intentionally Left Blank

FOREWORD

I would sincerely like to congratulate everyone involved in the development of the "Hollow Concrete Blocks Manual for Load Bearing Structures" for Reconstruction of Earthquake Resistant Houses, which has been published by the National Reconstruction Authority (NRA). This manual will support houses that have been constructing using concrete blocks in various district.

Thirty-one districts have been identified by the GoN Post Disaster Needs Assessment (PDNA) as being earthquake affected. To date, almost 750,000 households across the 31 districts have been identified as being eligible to receive 300,000 NPRs housing reconstruction grant.

I look forward to seeing the manual implemented across the earthquake affected districts and to seeing the impact that it will have. This represents another positive step forward in the reconstruction process, and will support households to overcome non-compliance issues and secure approval to receive tranches of the reconstruction grant and to have safe, compliant and resilient in the face of future disasters.

> Sushil Gyewali Chief Executive Officer, NRA

This Page is Intentionally Left Blank

PREFACE

Under housing reconstruction programme "Build Back Better" (3B) shall be achieved in construction and should be ensured by with design and construction. One way of achieving 3B will be making design and construction compliant to NBC 105 : 1994 requirement . This manual is developed so that its is easy for engineers in Technical Assistance (TA) to inspect and guide the masons in the field.

This manuals covers mainly inspection forms with comprehensive inspection methodology and cost effective correction measures for non-compliant cases were suggested in order to guide Inspectors/Engineers while providing Social Technical Assistance (STA).

This manual will be used by all the engineers who are working for the reconstruction and have been developed by the GoN to carry out inspections.

This manual has been divided into five parts and five annexes: PART-1: Background PART-2: Building Typology and Inspection PART-3: Technical Specification PART-4: Correction Measures PART-5: Ready to Use Design Annex A: HCB Unit Quality Test at Site Annex B: Structural Analysis and Design Annex C: Estimate of Correction Measures Annex D: Case Study on Inspection Annex E: Inspection Forms (HCB Masonry)

I am hopeful that this manual will fulfill the knowledge gap incase of concrete block constructions and give STA to right direction, eventually the construction would be as per the spirit of Nepal National Building Codes along with ease in distribution grants.

> Dr. Hari Ram Parajuli Executive member, NRA

Earthquake resistant private housing standardization committee, NRA

Member

Dr. Hari Ram Parajuli Er. Prakash Thapa Dr. Jagat Kumar Shrestha Er. Nava Raj Pyakurel Hari Prasad Sharma Representative

Invited Experts

Prof. Dr. Prem Nath Maskey Prof. Dr. Hikmat Raj Joshi Prof. Dr. Gokarna Bahadur Motra Er. Rajkaji Shrestha Er. Mahohar Raj Bhandari Er. Jhapper Singh Vishokarma Dr. Ramesh Guragain Dr. Hiroshi Imai Er. Hima Gurubacharya Ar. Bhubaneswari Parajuli Er. Kuber Bogati

Technical Working Group (TWG)

Dr. Hiroshi Imai Er. Kuber Bogati Er. Nabin Poudel Er. Deepak Saud Er. Aasish Tiwari Ar. Sabika Mastran Mr. Laxmi Pd. Bhatta Ar. Reshma Shrestha Ar. Animesh Raj Bajracharya Chairman, Executive member, NRA Member, Joint-secretary, NRA Member, Associate Professor, IOE,TU Member, NRA-CLPIU (Building) Representative from, NRA-CLPIU (GMaLI) Representative from MoUD

IOE, TU IOE, TU IOE, TU Senior Divisional Engineer, NRA Adviser, NRA, Private consulting Deputy Project Director, NRA-CLPIU(Building) Deputy Executive Director, NSET Consultant EERT Director, NSET National Technical Coordinator, HRRP National Technical Co-ordination officer, HRRP

Consultant HRRP NRA HRRP NSET Consultant HRRP HRRP Consultant

ACKNOWLEDGEMENTS

We would like to express our deepest gratitude to IOE/TU, NSET and HRRP-Nepal for their initiation and continuous involvement during the preparation of this manual.

Our sincere thanks to the respected senior experts Prof. Dr. Hikmat Raj Joshi, Prof. Dr. Prem Nath Maskey, Prof. Dr. Gokarna Bahadur Motra, Er. Manohar Raj Bhandari, Associate Prof. Dr. Jagat Kumar Shrestha Dr. Narayan Marasini, Dr. Hiroshi Imai, Mr. Surya Narayan Shrestha and Dr. Ramesh Guragain for their support and suggestions during the discussions on critical issues which were vital while finalizing the content.

Thanks to Central Material Testing Laboratory Team- Pulchowk Campus, Earthquake Engineering Research and Training Division (EERT)-Team-NSET, Er. Abhishek Ghimire, Er. Pukar Regmi, Er. Subash Dawadi and Er. Januka Bhattarai.

We are thankful to NRA technical Working Group: JICA TPIS-ERP, NSET and HRRP-Nepal. We would also like to thank Dr. Hiroshi Imai, Senior St. Er. Kuber Bogati, Senior St. Er. Nabin Paudel, St. Aasish Tiwari, Er. Deepak Saud, Ar. Sabika Mastran,, Asst. Er. Laxmi Prasad Bhatta and Ar. Animesh Raj Bajracharya for their continuous work during the preparation of this manual.

We would like to congratulate all personnel involved, directly and indirectly, for their valuable contribution to the preparation of this manual.

Standardization Committee, NRA for Reconstruction of Earthquake Resistant Houses

ACRONYMS

ВМС	Brick Masonry in Cement mortar
С	Compliance
C/S	Cement to sand ratio
CGI	Corrugated Galvanized Iron
CL-PIU	Central Level Project Implementation Unit
CMU	Concrete Masonry Unit
DL-PIU	District Level Project Implementation Unit
DSE	District Support Engineer
DUDBC	Department of Urban Development and Building Construction
EERT	Earthquake Engineering Research and Training Division
GI	Galvanized Iron
GoN	Government of Nepal
НСВ	Hollow Concrete Block
HRRP	Housing Recovery and Reconstruction Platform-Nepal
IOE, TU	Institute of Engineering, Tribhuvan University
IS	Indian Standard
MoFALD	Ministry of Federal Affairs and Local Development
MoUD	Ministry of Urban Development
MRs	Minimum Requirements
NBC	Nepal National Building Code
NC	Non-compliance
NK	Not know
NRA	National Reconstruction Authority
NSET	National Society for Earthquake Technology-Nepal
Р	Passage
PDNA	Post Disaster Needs Assessment
R	Room
RC	Reinforced Concrete
RCC	Reinforced Cement Concrete
SMC	Stone Masonry in Mud mortar
SMC	Stone Masonry in Cement mortar
STA	Social Technical Assistance
ТА	Technical Assistance
TWG	Technical Working Group
USAID	United States Agency for International Development

Contents

PART-1: Background

1.1	Background	-2
1.2	Rationale	.3
1.3	Limitation of manual	-4

PART-2: Building Typology and Inspection

2.1 Concrete blocks units	6
2.2 Compressive strength	-
2.3 Structural use of concrete block	-
2.4 Inspection method	19

PART-3: Technical Specification

3.1	Construction Sequence of building	22
3.2	Building components	24
3.3	Minimum requirements	26

PART-4: Quality Control Vs. Assurance

4.1 Material Quality	30
4.2 Manufacturing Process	31
4.3 Quality Standards and Tests	34
4.4 Manufacturer's Certificate	36

PART-5: Correction Measures

PART-6: Ready to Use Designs

Annex A: HCB Unit Quality Test at Site Annex B: Structural Analysis and Design Annex C: Estimate of Correction Measures Annex D: Case Study on Inspection Annex E: Inspection Forms (HCB Masonry)

P37 ~ P52

P53 ~ P56

This Page is Intentionally Left Blank

PART-1: BACKGROUND

- 1.1 Background
- 1.2 Rationale
- 1.3 Limitation of Manual

1.1 Background

Hollow concrete blocks (HCBs) were becoming an increasingly prevalent material for housing construction. The demand for this product is high across the earthquake affected districts due to various reasons. [Size of **HCB Building Units:**] Buildings being built are typically constructed in the sizes of two roomed, three roomed and four roomed with and without verandah and CGI roofing. [Major non-complaint issues in HCB Construction] the quality of block units during production and the provision of seismic banding during house construction are major noncompliant issues found in the site, on which performance of buildings is greatly relay. Also, the Department of Urban Development and Building Construction (DUDBC) Design Catalogue for Reconstruction of Earthquake Resistant House Volume 2, published in March 2017, includes approved designs for two-storey HCB confined masonry and masonry building. However, households are generally not following these designs and GoN engineers are unable to provide other alternatives or information. [Standards] Nepal Standard: 119/2042 ensures the quality control requirements for HCBs production in Nepal, if followed properly. [Size of HCB units] HCBs are typically available in the nominal block sizes of 400x200x200mm, 400x150x200mm, and 400x100x200mm as per NS 119/042.

Photographs: HCB construction at Kaski

1.2 Rationale

[Case load] Almost all the EQ. affected district has buildings constructed using HCB. Approximately, 3000 HHs were reported in grant MIS system till date. **[Gaps]** There is no Inspection form (checklist to be used) and supporting manual on HCB construction for Inspectors/Engineers (with corrective measures).

[Research works & Recommendation]

A report which presents the findings of two rounds of HRRP data collection on the production and use of Hollow Concrete Blocks (HCBs) across the districts affected by the 25 April 2015 Gorkha earthquake, from this report this volume of manual addresses mainly

- Method of Inspection and checklist
- Correctives measures on existing Construction to guide Inspectors/Engineers for suggesting masons and home owners.

[Efforts and Initiation]

NRA did take initiation to resolve the issues regarding HCB construction, in particular, a technical working group (TWG) were formed and task were assigned accordingly, the completed works were presented in front of NRA Standardization Committee.

[Rationale] Under housing reconstruction programme "Build Back Better" (3B) shall be achieved in construction and should be ensured by with design and construction. One way of achieving 3B will be making design and construction compliant to NBC 105 : 1994 requirement . This manual is developed so that its is easy for engineers in Technical Assistance (TA) to inspect and guide the masons in the field.

[Scope of Manual]

- ✓ This manual has been prepared on the basis of NBC105 : 1994, NBC202:1994 and IS 2185 : 2005.
- ✓ The designs presented in the manual are ready-to-use designs structural components.
- ✓ This design results are equally applicable to solid concrete blocks Buildings too provided that the strength and mechanical properties related parameters shall be equivalent to HCBs.
- ✓ Steel pipes provisioned in existing cases shall be acceptable if the net cross sectional area of steel is twice the TMT bars.
- ✓ EXCEPTION/CORRECTION MANUAL for Masonry Structures [2017], HYBRID STRUCTURES MANUAL [2017] and LIGHT TIMBER/STEEL FRAME STRUCTURE MANUAL [2018] are equally applicable in case of HCB buildings[where applicable].

[Limitations of Manual]

This manual covers the reinforced masonry structural wall system building which are newly constructed or under construction using concrete blocks (Hollow or Solid) under the GoN housing reconstruction programme.

This manual has certain limitations and is only relevant for buildings which are:

I.Residential and fall under category 'C' of NBC 2002:1994.

- Category "A": Modern building to be built, based on the international state-of-the-art, also in pursuance of the building codes to be followed in developed countries.
- ✓ Category "B": Buildings with plinth area of more than One Thousand square feet, with more than three floors including the ground floor or with structural span of more than 4.5 meters.
- ✓ Category "C": Buildings with plinth area of up to One Thousand square feet, with up to three floors including the ground floor or with structural span of up to 4.05 meters.

PART-2: BUILDING TYPOLOGY & INSPECTION

- 2.1 Concrete Block Units
- 2.2 Compressive Strength
- 2.3 Structural Use of Concrete Blocks
- 2.4 Inspection Method

A concrete block is primarily used as a building material in the construction of walls. It is sometimes called a concrete masonry units (CMU). Concrete blocks are produced in a large variety of shapes and sizes. They can be produced manually or with the help of machines. A concrete block is one of several precast concrete products used in construction.

The term **precast** refers to the fact that the blocks are formed and harden before they are brought to the job site.

Most concrete blocks have one or more hollow cavities, and their sides may be cast smooth or with a design. In use, concrete blocks are stacked one at a time and held together with fresh concrete mortar to form the desired length and height of the wall.

Solid blocks – a block which has solid material not less than 75 percent of the total volume of the block calculated from the overall dimension (according to US standards-have no voids amounting to not more than 25% of the gross cross-sectional area).

Hollow (Open or Closed Cavity) blocks – A block having one or more large holes or Cavities which – either pass through the block (open cavity) or do not effectively pass through the block (closed cavity) and having solid materials between 50 to 75 percent of the total volume of the block calculated from the overall dimensions.

In our case, closed cavity hollow blocks are in use as shown below.

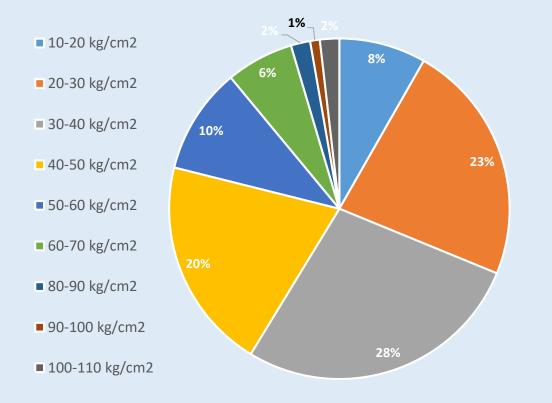
Length	Height	Thickness	
400 mm full block 200 mm half block	200 mm	100 mm 150 mm 200 mm	
External Wall Thickness:			
Length	Minimum Shell Th	n External nickness	
400X200X100 mm 400X200X150 mm 400X200X200 mm	35 mm 40 mm 40 mm		
	Photo : Cl	osed cavity	

[Advantages of Concrete Blocks]

- ✓ Highly durable: Good concrete compacted by high pressure and vibration gives substantial strength to the block.
- ✓ It is a faster and easier construction system, when compared to the conventional construction systems.
- ✓ Economical
- ✓ Proper curing increases compressive strength of the block.
- ✓ Load bearing strength can be achieved as per the requirement.
- ✓ Fire resistant
- ✓ Color and brilliance of masonry withstand outdoor elements.
- Provide thermal and sound insulation: Air inside the hollow gap of block does not allow transfer of outside heat or cold inside the house; keeping the house cool in summer and warm in winter.
- ✓ Reduced air conducting load: Approx. 50% saving.
- ✓ Environment friendly if fly ash is used as one of the raw materials.
- ✓ Low maintenance required.
- In this construction system, structurally each wall and slab behaves as a shear wall and a diaphragm respectively, reducing the vulnerability of disastrous damage to the structure/building during natural hazards.

[Limits of Application of Concrete Block]

- ✓ Raw material must be locally available, of good quality and economically viable.
- Relatively large amount of cement is needed, which can be expensive and difficult to obtain.
- ✓ Special knowledge and experience of the production process is required.


[Compressive Strength Tests for HCB Units]

The value of crushing strengths of blocks tested in accordance with the method of test for Precast concrete blocks.

Blocks are tested for compressive strength in accordance with the specification of NS 119/2042. Table below gives the crushing strength scenario in the districts:

Туре	Average Block	Lowest Individual Block
5 MPa (or More)	6.8 MPa	5.1MPa
5 MPa (Less)	3.4MPa	1.4MPa

* [Conclusion of Test] Majority of the block units failed to meet the specification as per NS 119/2042.

[Sample collection of Block] Six producers of HCB were selected on the basis of their selling capacity in each districts, from each producers four HCBs were collected and three blocks were tested.

[Compressive Strength Tests for Walls]

The walls were constructed using poor quality HCB units and tested in accordance with the method of test for prism test.

Walls are tested for compressive strength in accordance with the specification of Indian Standard. Table below gives the crushing strength:

Block Unit Test		Wall Test	
Average Block Unit Strength	Lowest Individual Block Strength	Average Wall Strength	Lowest Individual Wall Strength
5 MPa (Less)	1.4 MPa	1 MPa	0.78 MPa

[Wall Dimension]

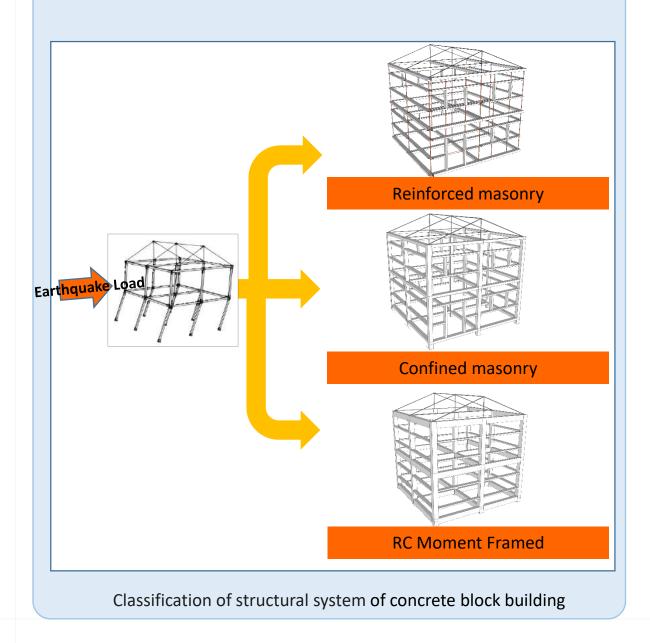
Length	Height	Width
810 mm	370 mm	150 mm

[Input of Structural Analysis and Design]

The corrective measure were developed considering the poor quality of HCB units as follows:

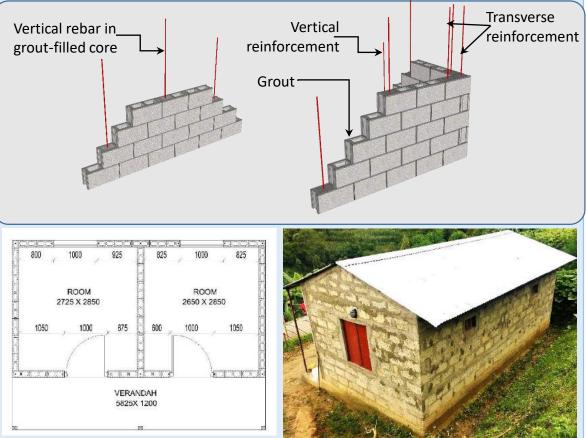
- **Compressive strength of walls** : The design value of capacity of walls in compression were taken as 40% of the capacity of the wall from wall sample having the lowest compressive strength value.
- Unit weight : 16 kN/m^3

Photo : Laboratory Test of Walls


NRA Technical Team (TWG) surveyed concrete block buildings across different areas of Rupa Gaupalika, Annapurna Gaupalika, and Pokhara-Lekhnath Metropolitan in Kaski district. The team also received information on prevalent HCB constructions from 32 EQ affected districts from various sources. The team noted all the architectural and structural detailing of existing building components along with material specifications.

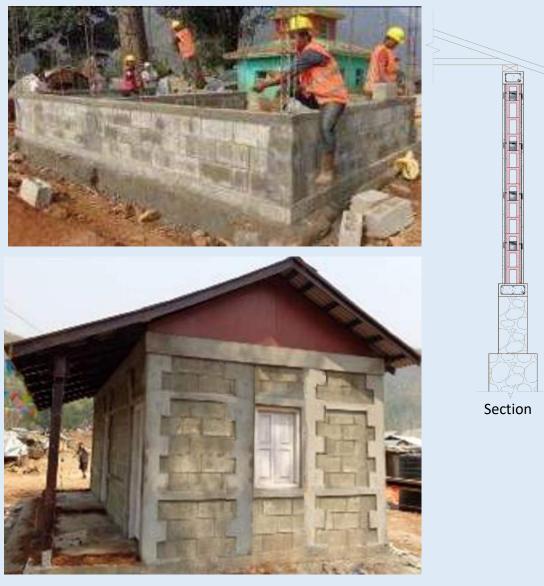
Current trend of concrete blocks use in building typology

From the compiled data, concrete block buildings can be classified into three structural systems as below:

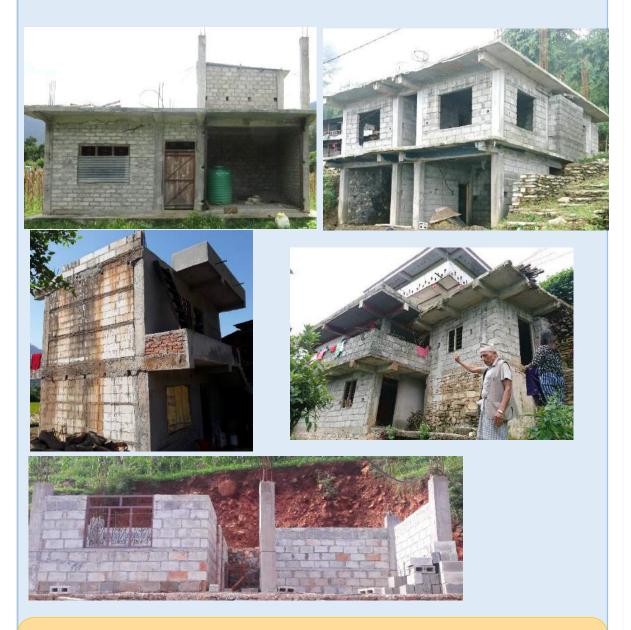

- 1. Reinforced masonry structural wall system
- 2. Confined masonry structural wall system
- 3. RC Moment framed system with infills

Reinforced Masonry Structural Wall System

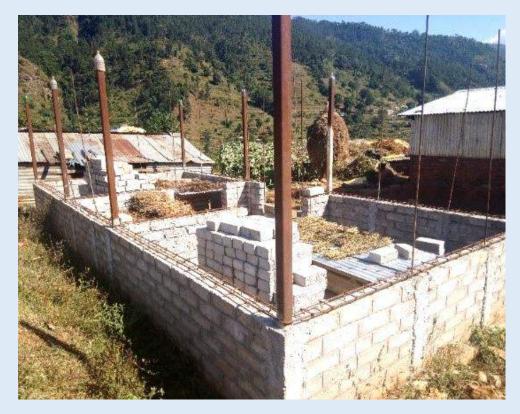
In **reinforced masonry**, vertical and horizontal reinforcing bars are provided to enhance the strength and ductility (deformability) of masonry walls. Vertical reinforcing bars are placed in the hollow cores, which are subsequently grouted with a cement-based grout to anchor the reinforcement and protect it from corrosion.


Vertical reinforcement is placed at the wall corners and intersections, around the openings, and at additional locations depending on expected seismic loads. Horizontal reinforcement is provided in the form of ladder-shaped wire reinforcement placed in horizontal joints, or deformed reinforcing bars placed in bond beams, typically located at plinth, sill, lintel and roof levels.

 [Exceptional Cases] : The [Practical] RC columns and beams are provided with flexible floor/roof and the building does not comply to MR according neither to RCC Framed nor to Confined Masonry.


Confined Masonry Structural Wall System

Concrete block wall resists the lateral loads and RC element confines the walls. Concrete block walls with toothing are constructed up to sill level leaving space for columns and then columns and sill are monolithically casted. Same process is applied after constructing concrete block wall up to lintel.


RC Moment Framed

RC frames resist both gravity and lateral loads through their relatively large beams, columns, and their connections. Masonry in fills are not load- bearing walls

• [Exceptional Cases] : The rebar (in building infilled with HCB) can differ but shall be justify with Structural Analysis and Design.

[Structural Use of HCB: (single storey building with light roof)]

Square Hollow Pipe Sections & Rebar at Critical Location of Masonry Structures

Rebar at Critical Location of Masonry Structures, [construction sequence: Confined Masonry]

[Structural Use of HCB: (Double storey building with light roof)]

[Practical] RC Column and Beams

[Practical] RC Column and Beams

[Structural Use of HCB: (Double storey building with light roof)]

HCB Infilled Timber Framed Structure

HCB Infilled Timber Framed Structure

[Structural Use of HCB: (Double storey building with light roof)]

Hybrid Structure [Upper Storey : Light Timber Frame Structure] [Lower Storey : HCB Structure]

Hybrid Structure [Upper Storey : HCB Structure] [Lower Storey : Stone in Cement Structure]

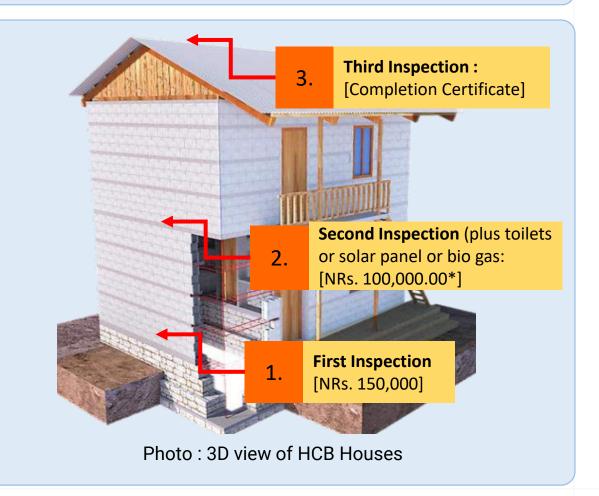
2.4 Inspection Method

[Building Typology based on Inspection Form]

[Reinforced Masonry Structural Wall System] Those buildings which falls under this typology shall be inspected using

[Confined Masonry Structural Wall System] Those buildings which falls under this typology shall be inspected using

[Framed System with HCB Infills


Those buildings which falls under this typology shall be inspected using

 Note : All other structures except mentioned above in this page, can be inspected with help of Hybrid Structure Manual and Light Timber/Steel Frame Structure Manual.

[Inspection Methodology]

Under reconstruction programme, if conditions of building are below, inspection shall be based on specification provided in this manual hence, structural calculation is not required.

- 1. Upto two storey, ground floor with masonry (SMC, BMC ONLY) structure and first floor with Hollow Concrete Block structure.
- 2. Upto two storey, both ground and first floor with Hollow Concrete Block
- 3. However, if the building is more than two storey, structural calculation is mandatory.

PART-3: TECHNICAL SPECIFICATION [Reinforced Masonry Structural Wall System]

- 3.1. Construction Sequence of Building
- 3.2 Building Components
- 3.3. Minimum Requirements

3.1 Construction Sequence

Construction Sequence of **Reinforced Masonry Structural Wall System** using hollow concrete blocks unit as described below:

1 Excavation

2 Stone soling

3 Placing lean concrete

- 4 Construction of foundation with installation of vertical element
- 5 Construction of Plinth band

Construction Sequence

6 Filling and placing lean concrete

- 7 Construction of masonry wall, sill and stitch band
- 8 Construction of lintel and roof band

9 Installation of Roof

10 Installation of CGI sheet

3.2 Building Components

1. Shape and Size of building

Simple rectangular shapes behave better in an earthquake than shapes with projections. The inertia forces are proportional to the mass (or weight) of the building and only building elements or contents that possess mass will give rise to seismic forces on the building.

2. Materials

Inadequate materials do not have sufficient stability and strength to withstand the lateral forces. Hence, use of these substandard materials might lead to the failure or ultimately collapse of the overall structure.

3. Foundation

Buildings which are structurally robust against earthquakes sometimes fail due to inadequate foundation. Tilting, cracking and failure of superstructures may result from soil liquefaction and differential settlements of footing.

4. Vertical Member

Vertical reinforcement is used in masonry building to improve the integrity of the walls, to tie the walls together, and to tie the building from the foundation to roof band. Buildings with substandard or absent reinforcement are vulnerable during earthquakes.

5. Plinth

An unequal or loosely packed plinth will not provide a base of sufficient stability during an earthquake.

6. Wall

Load bearing masonry must have sufficient stability and strength to withstand lateral forces. Substandard walls may fail by cracking.

7. Openings

Openings reduce the strength and stability of the wall.T oo close to each other and to the corner reduce the overall strength of masonry.

8. Horizontal member

Horizontal members are essential to tie the building together to act as a box. In absence of these bands, the building shall face in plane or out of plane failure.

9. Roof

In order to resist against lateral forces, proper connection of roof to the vertical post and top plate is essential. Depending upon the structures, cross bracing is also required.

3.3 Minimum Requirements

No	Category	Sub Category	Description
			Geological fault or rupture areas
			Landslide susceptible areas
	Site		Steep Slope > 20° (1:3, Vertical : Horizontal)
1.	selection	Site should be away from	Filled areas
			Liquefaction susceptible Area
			River bank and Water logged Area
			Rock fall Area
		No. of storey	Not more than two storey [For inspection basis)
	Shape and size of	Clear span of wall	Not more than 4.05m.
2.	building	Floor Area	Not more than 100 sq.m.
		Proportion	Simple and regular shaped as square and rectangular. The length of house shall not be more than 3 times of its width.
	Materials	Concrete block	Size: Full block 400mm*150mm*200mm Half block 200mm*150mm*200mm
3.		Mortar	Cement sand mortar shall not be leaner than 1:6 (1 part cement and 6 parts sand by volume) for masonry.
		Concrete Grade	M20 grade (1 cement: 1.5 sand: 3 aggregate)
		Rebar	High strength deformed bars with Fy = 415 Mpa /500 Mpa.
		It shall be continuou foundation in flat are	s strip footing of uniform width at same level throughout the a.
4.	Foundation	Depth of foundation below GL	For one story : 450mm For two story : 650mm
		Base width	For one story : 450mm For two story : 650mm
		Shall be started right	from the foundation and continue up to the roof band.
5.	Vertical	it shall be provided a	t each corner, T-junction and side of opening.
5.	member	Reinforcement	Refer table 1or 2, in the manual
		Anchorage	The anchorage length shall be 60 times diameter of the bar.

Minimum Requirements

No	Category	Sub Category	Description
		General	The level of plinth shall not be less than 300mm from ground level.
		Thickness	The thickness of band shall be 150 mm.
6.	Plinth	Width	It shall not be less than wall thickness.
		Reinforcement	Main reinforcement shall be 4-12 dia with 6mm dia. stirrups at 150mm centres. Bars shall have a clear cover of 25mm concrete.
		Masonry shall not be joints.	e laid staggered or straggled in order to avoid continuous vertical
		Thickness	It shall not be less than 150mm
7.	Wall	Joints	Mortar joints shall not be more than 20mm and less than 10mm in thickness.
		Buttress wall	Provide for long span of wall .
		Gable wall	Provide light gables using wood, CGI sheets etc.
		Location	Openings are to be located away from inside corners by a clear distance equal to at least 1/4 of the height of the opening, but not less than 600 mm.
8.	Doors / windows.	Total length	The total length of openings in a wall is not to exceed 60 % of the length of the wall between consecutive cross-walls in both single and two-storey construction.
		Distance	The horizontal distance between two openings is to be not less than one half of the height of the shorter opening, but not less than 600 mm.
		Sill band [concrete size & Reinforcement]	A continuous band having thickness 75mm, rebars 2-12 Ø stirrups $6\emptyset @ 150$ mm with clear concrete cover 25mm shall be provided through all walls at the bottom level of windows opening.
	Horizontal band	Lintel band [concrete size & Reinforcement]	A continuous band having thickness 150mm, rebars 4-12 Ø stirrups 6Ø @150 mm with clear concrete cover 25mm shall be provided through all walls at the lintel level of windows/door openings.
9.		Stitch band [concrete size & Reinforcement]	At corners and T- junctions, stitches(dowels) shall be provided at a vertical spacing of 600mm. Band thickness 75mm, rebars 2-12 Ø stirrups 6Ø @150 mm with clear concrete cover 25mm shall be provided through all walls at the bottom level of windows opening.
		Roof band & Gable [concrete size & Reinforcement]	A continuous band having thickness 150mm, rebars 4-12 Ø stirrups 6Ø @150 mm with clear concrete cover 25mm shall be provided through all walls at the roof level of windows/door openings.
		Rebars lapping and anchorage	The anchorage length shall be 60 times diameter of the bar.
		Material	Use of light roof
10.	Roof	Connection	All member shall be properly connected.
		Bracing	For flexible diaphragm, diagonal bracing shall be considered.

This Page is Intentionally Left Blank

PART-4 QUALITY CONTROL VS. ASSURANCE

[PART-4 QUALITY CONTROL AND QUALITY ASSURANCE]

- 4.1 Material Quality
- 4.2 Manufacturing Process
 - Mixture of Mortar
 - Batching and Mixing
 - Moulding and Compaction
 - Curing and Drying
- 4.3 Quality Standards and Tests
- 4.4 Manufacturer's Certificate

4.1 Material Quality

Minimum Requirements

		Concrete block	Size: Full block 400mm*150mm*200mm Half block 200mm*150mm*200mm
2.	Materials	Mortar	Cement sand mortar shall not be leaner than 1:6 (1 part cement and 6 parts sand by volume) for masonry.
		Concrete Grade	M20 grade (1 cement: 1.5 sand: 3 aggregate)
		Rebar	High strength deformed bars with fy = 415 MPa /500 MPa.

[Quality of Materials]

The quality of raw materials must be ensured to meet the NS/IS standards prior the block making process.

Cement

- ✓ Ordinary Portland Cement
- ✓ Special Cement

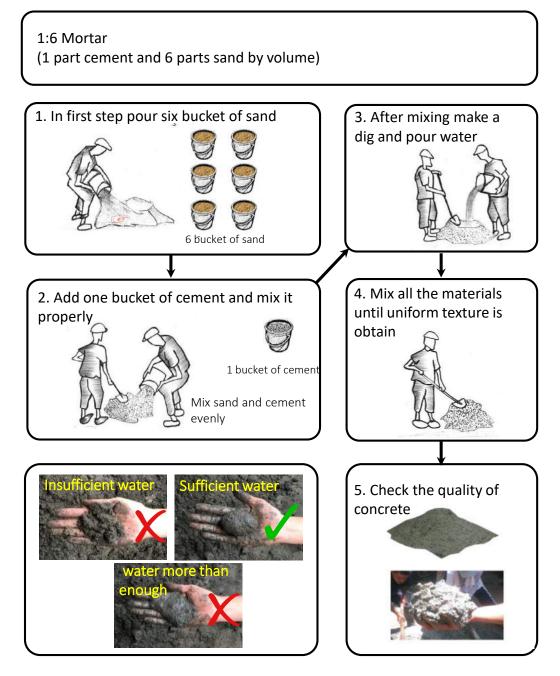
Aggregate

- ✓ Mixture of Sand or Chips Gravel
- ✓ Max. particle size should be 10mm.
- Most appropriate aggregates are obtained from natural sources (river beds, gravel pits, volcanic deposits) or from industrial byprocess (granulated blast furnace slag, sintered fly ash)

Cement- Aggregate Ratio

- Suitable proportion of cement to aggregate must be taken from standard testing.
- ✓ Common ratios are 1:6, 1:8 (C/S)

Water-Cement Ratio


- ✓ Only drinking quality water should be used to mix the concrete
- ✓ Recommended Water-Cement ratio is 0.5

4.2 Manufacturing Process

Depending upon the types of compression force, Hollow Concrete Blocks can be divided as:

- Manual Made: The force required to compress the HCBs are imparted manually through the compression machine.
- Machine Made: The force required to compress the HCBs are imparted automatically through the compression machine. The blocks produced thus have similar compressive strength. Cement requirement too is 15% less compared to the manually made HCBs to achieve same compressive strength.

Mixture of Mortar

Manufacturing Process

[Batching and Mixing]

- ✓ Batch aggregates and cement by volume.
- ✓ Mix cement and aggregates using mattock, shovel or mixer until it reaches homogeneous condition.
- ✓ Add some water
- \checkmark In hot climates, the fresh mix must be shaded from sun.

Batching by Volume

1/2 bucket water

1 bucket cement

7 bucket aggregate

Manual Made HCBs

Machine Made HCBs

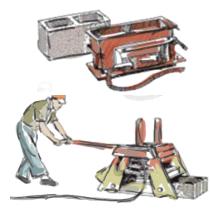
[Moulding and Compaction]

- ✓ Put the mixture into wooden or steel mould boxes or moulding machine.
- ✓ Place the blocks in the compressing machine and compress according to the compressing machine type (Manual or Machine).
- Demould blocks immediately after compaction.

[Curing and Drying]

- ✓ Cover demoulded blocks with plastic sheets for 24 hrs.
- ✓ Keep the concrete blocks moist by immersing in water tanks or by regularly spraying with water for 7 days.
- ✓ Do not expose to direct sun light; keep the blocks in a dry and covered area
- ✓ Store the blocks for 2 weeks before usage.

Manufacturing Process Steps


1. Batching

3. Moulding and Compaction

4. Fresh HCB

[Quality Standards]

Both national and international standards exist for the production of HCBs. NS Standard (Nepal Standard 119/2042) has been issued bv National Bureau of Standards and Measurements. the lt covers standards of raw materials, physical properties of HCB and different standard testing methods.

Indian Standard Code (IS 2572:2005) too can be referred.

Physical Properties (NS 119/2042)		
Density	1600kg/m3	
Compressive	5N/mm2 (Minimum)	
Strength		
Drying Shrinkage	0.04% (Maximum)	
Moisture	0.03% (Maximum)	
Movement		
Water Absorption	240kg/mm3	
	(Maximum)	
Water Content	40%	

The standard tests requiring for ensuring quality of blocks are:

[Material Density Test]

- Three blocks taken at random from the samples selected in accordance with 10, shall be dried to constant mass in a suitable oven heated to approximately 100°C.
- After cooling blocks to room temperature, the dimensions of each block shall be measured in centimeters (to the nearest millimeter) and the overall volume computed in cubic centimeters.
- The block then be weighed in kilograms (to the nearest 10g) and the density of each block calculated as follows:
- Density = Mass of block in kg/Volume of specimen in cm3 X 10^6 kg/m3
- The average for the three blocks shall be taken as the average density.

[Compressive Strength Test]

It Shall be carried out as per either NS119/2042 or IS 2185.1.2005. and the results must comply with specified standards.

Quality Standards and Tests

[Sample Report of HCB Laboratory Test Result]

TRIBHUVAN UNIVERSITY INSTITUTE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING CENTRAL MATERIAL TESTING LABORATORY

COMPRESSIVE STRENGTH

Materials Testing

Cens nuvan Unive

Name : Housing Recovery & Reconstruction Platform Location : Jwagal, Lalitpur, Nepal Date : 2074/01/02

Material :Hollow Block Marked as : SBU District : Dhading

Cement Concrete Hollow	Block	1	2	3	Remarks
Date of testing					
Age	(Days)	N	Aore than 28 day	/S	
Dimension	cm.	39.5x14.5x20	39.5x14.5x20	39.5x14.5x20	
Surface area	cm ²	386.25	386.25	386.25	
Volume.	cm ³	8445.00	8445.00	8445.00	
Weight	gms.	20300.00	20000.00	20100.00	
Density	gm/cm ³	2.404	2.368	2.380	
Breaking Load	Kg	400.00	250.00	250.00	
Breaking Strength.	KN/cm ²	1.03	0.64	0.64	
Avg. Breaking Strength	KN/cm ²				

Note : Concrete hollow block were supplied by HRRP

Ram S. Timilsinna Tested by

(Rajendra R.Pant) Dy.Chief Dy. Chief

To ensure the quality of HCB units at construction site, refer User's Guidelines for Quality Tests,

4.4 Manufacture's Certificate

[Manufacturer's Certificate]

The manufacturer shall satisfy himself that the blocks conform to the requirements of this specification and, if requested, shall forward a certificate to this effect to the purchaser.

[Sample Certificate]

S	S.N	Category	Description	HCB Manual Standards	requir	imum •ements	Remarks
					Yes	No	
1		Block Size	Dimension of Block	Full Block:400X200X150(mm) Half Block:200X200X150(mm)			Tolerances of ± 3 mm on length and ± 1.5 mm on breadth and height
2	2		Proportion of HCB	1:6 (Cement: Sand & Aggregate) 1:8 (Cement: Sand & Aggregate)			
		Block Quality and	Maximum Size of Aggregate	10 mm			
		Properties	Density	1600 kg/m3			
			Compressive Strength	5N/mm2			
			Water absorption	240kg/mm3			
3	3		Type of Compaction	Manual			
		Manufacture Details		Machine			
			Curing Type	Immersion/Spray			
			Curing Period	Minimum 7 days			

Details of Producer:

Name	
Address	
Signature & Date	
PAN/VAT	
Number	

Certificate is needed because producers are the first responders to ensure quality construction, so knowledge of safer construction practices at consumer level can be imparted from the producer level.

PART-5 CORRECTION MEASURES

- 5.1 Major Non-compliance Issues
- 5.2 Strengthening Opening
- 5.3 Addition of RC Horizontal Bands
- 5.4 Addition of RC Vertical Bands
- 5.5 Jacketing Against Localized Failures

5.1 Major Non-Compliance Issues

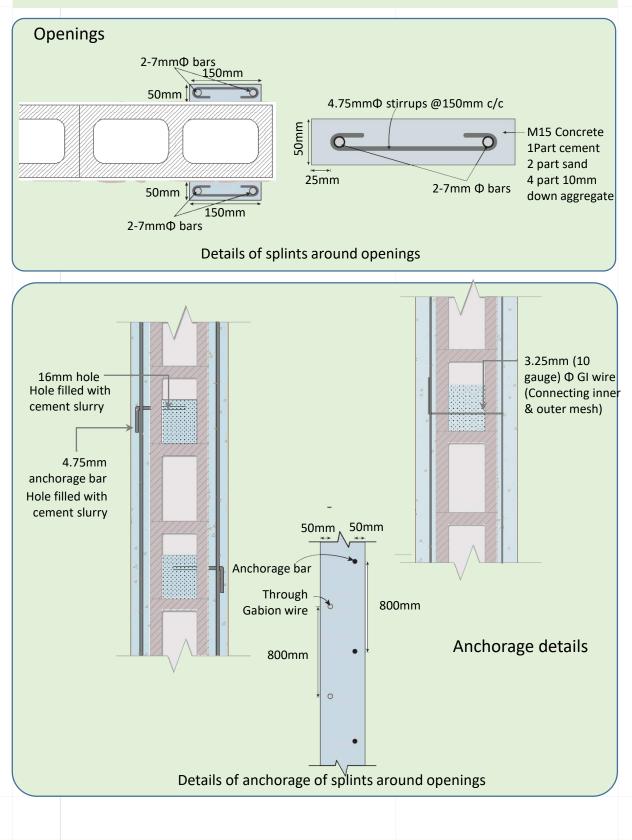
[Summary of Problem Statement] Major non-compliance issues are due to poor quality of HCB units and Missing of Seismic Bands at critical location of building units requiring according to MR.

Case/s	Block Unit Quality	Seismic Bands	MITIGATION WORKS (Correction)	MITIGATION OPTIONS
Case1	ОК	ОК	NO	No Mitigation
Case2	OK	NOT OK	YES	Splint & Bandage at Critical Location*
Case3	NOT OK	NOT OK	YES	Jacketing [Global] #
Case4	NOT OK	ОК	YES	Jacketing [Panel Specific] !

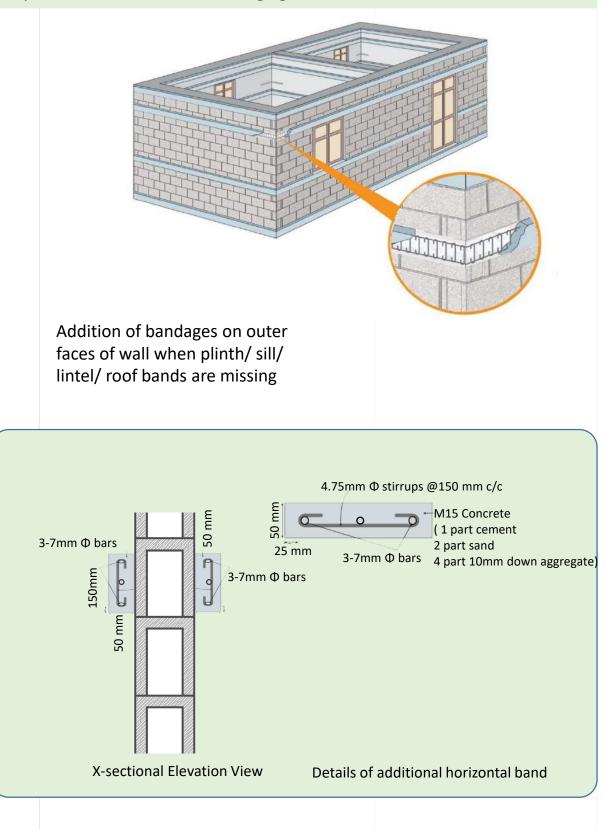
Case 1: During the inspection of building, Block units quality is found as per MR and Seismic bands are provisioned in building units, then no mitigation (correction) work is advisable.

*Case 2: During the inspection of building, Block units quality is found as per MR and Seismic bands are not provisioned in building units, then splint and bandage (at critical location) method of mitigation (correction) works is advisable.

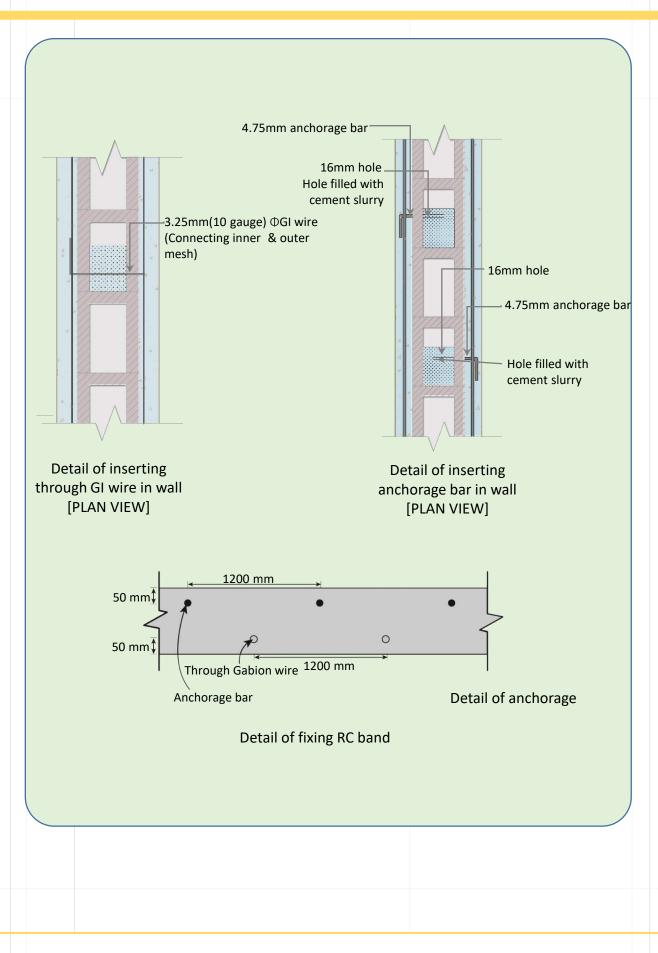
#Case 3: During the inspection of building, Block units quality is not found as per MR and also seismic bands are not provisioned in building units, then Jacketing (whole building unit) method of mitigation (correction) works is advisable.


!Case 4: During the inspection of building, Block units quality is not found as per MR and but seismic bands are provisioned in building units, then Jacketing (panel specific) method of mitigation (correction) works is advisable.

Note : Block units quality can be ensured either laboratory test results certified by supplier or means of non-destructive test at site.


5.2 Strengthening Opening

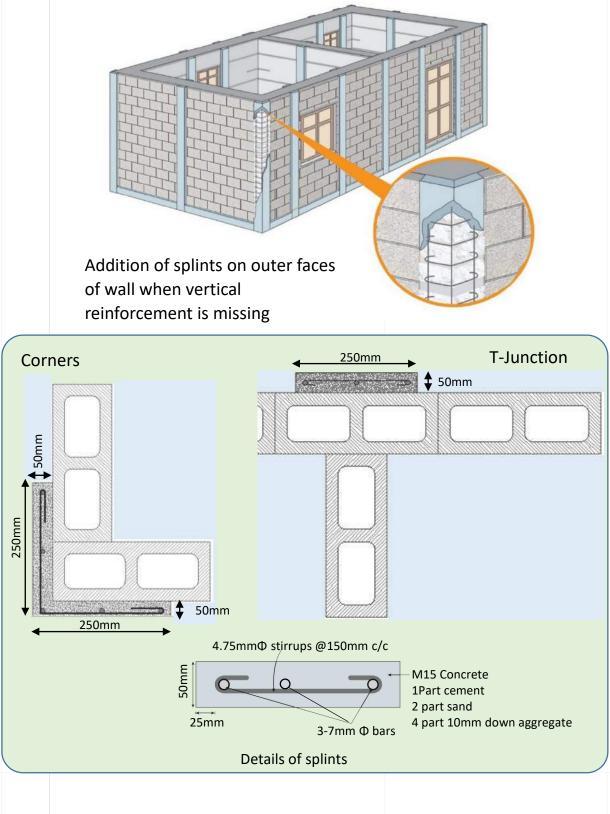
Provide RCC splint on outer faces of wall wherever required and anchor them sufficiently with the wall.

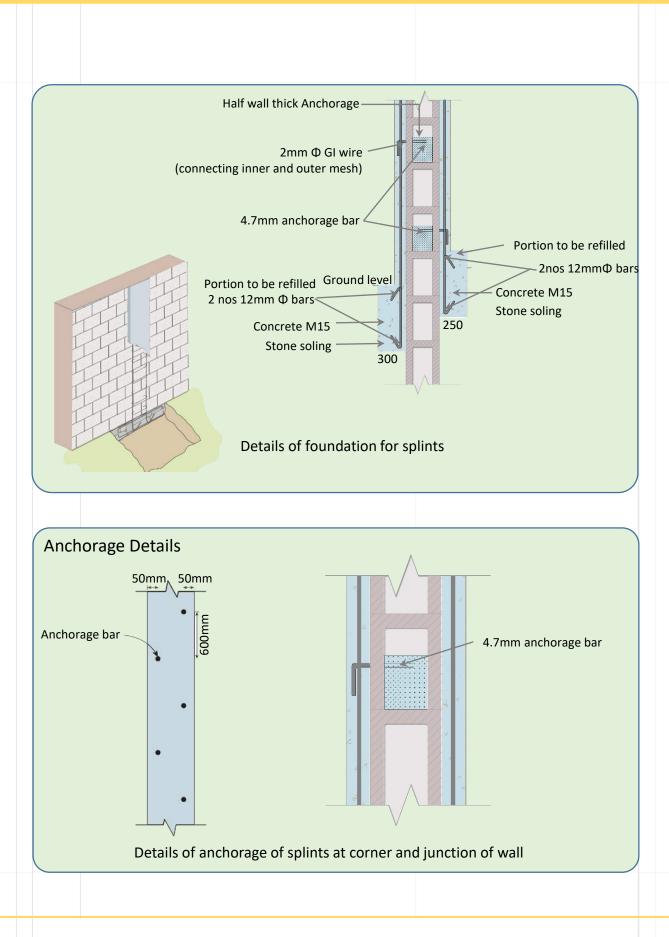


5.3 Adding RC Horizontal Band

Provide RC horizontal bands on both side of wall on outer faces wherever required as shown in the following figures:

5.4 Adding RC Horizontal Band


Adding RC Horizontal Band


Step	Description of work	Images
1.	 Surface Preparation: Remove the plaster from the areas of the wall where bandages are to be placed. Rake out mortar up to the depth of ½"-1" Clean the surface, but don't use water for cleaning as mud mortar will be removed Apply a thin layer of cement slurry on these area 	Removing plaster
2.	 Placing of Reinforcement Place horizontal steel bar mesh of bandages. Place stirrups on bandages (Note: Lapping of steel bars wherever required should be equal to development length: 4.75mm bar- 300mm lap 8 mm bar- 450mm lap 10 mm bar- 600mm lap 12 mm bar- 720mm lap 16 mm bar- 960mm lap) 	
3.	 Make holes for anchorage i) For through GI wire : Make through holes in walls using steel rod and hammer at suggested locations. Insert GI wires at suggested interval and location. ii) For anchorage bar : Make holes on one side of wall using steel rod and hammer. Insert steel anchorage bars at suggested interval and location. 	Image: second

Adding RC Horizontal Band

Step	Description of work	Images
4.	 Anchor reinforcing bar mesh Fix reinforcing bars into the wall using inserted steel anchorage bars, seal the anchorage bar using cement slurry Connect inner and outer mesh using inserted through G.I. wires 	
5.	 Application of Micro Concrete Apply micro concreting on the reinforced splint and bandages with rich micro-concrete (M15) -20 to 25 mm thick in two layers. (Total thickness is 40-50mm) Micro concreting can be done by hand, similar to plastering, without shotcrete machine like in plastering. 	
6.	 Curing of concrete Cure the concrete for 14days. Use jute bags/ mats for better curing 	

Provide RC vertical reinforcement(splint) on outer faces of wall wherever required and anchor them sufficiently with the wall as shown in the following figures:

Step	Description of work	Images
1.	 Surface Preparation Remove the plaster from the areas of the wall where bandages are to be placed. Rake out mortar upto a depth of ½"-1". Clean the surface, but don't use water for cleaning as mud mortar will be removed. Apply a thin layer of cement slurry on these areas. 	
2.	 Foundation Preparation Dig out trench for foundation as per suggested depth for placing tie beams for splints. Stone soling on the trench 	
3.	 Placing of reinforcement Place the horizontal bars in the trench Now, place vertical bars of splints Anchor them to the steel bar of trench Place stirrups on vertical bars (Note: Lapping of steel bars wherever required should be equal to development length: 4.75mm bar- 300mm lap 8 mm bar- 450mm lap 10 mm bar- 600mm lap 12 mm bar- 720mm lap 	
4.	Concreting of tie beam	

Step	Description of work	Images
	 Make holes for anchorage i) For through GI wire : Make through holes in mud mortar on walls using steel rod and hammer at suggested locations. Insert GI wires at suggested interval and location 	
5.	 ii) For anchorage bar : Make holes on one wyth of wall using steel rod and hammer. Insert steel anchorage bars at suggested interval and location 	Drill through the wal
6.	 Anchor reinforcing bar mesh Fix reinforcing bars into the wall using inserted steel anchorage bars, jam the anchorage bar using cement slurry. Connect inner and outer mesh using inserted through G.I. wires 	

Step	Description of work	Images
7.	 Application of Micro Concrete Apply micro concreting on the reinforced splint and bandages with rich micro-concrete (M15) -20 to 25 mm thick in two layers. (Total thickness is 40-50mm) Micro concreting can be done by hand without shotcrete machine like in plastering. 	
8.	 Curing of concrete Cure the concrete for 14days. Use jute bags/ mats for better curing 	

5.5 Jacketing Against Localized Failure

Example 1

[Reinforced masonry structural wall building] : Provide welded GI wire mesh as per specification ((100mm X 100 mm Square Mesh, 16 Gauge) on both side of wall panel and anchored them sufficiently. Apply plastering layer of mortar mixture of 1:4 to 1: 6 (cement to sand ratio). The thickness of plaster varies 15 mm to 20 mm on inner face of wall and 20 to 30 mm on outer face of walls. The construction sequence are mentioned in exception/correction manual], published by NRA.

Figures : Jacketing of HCB building using GI wires and plaster

Jacketing Against Localized Failure

Example 2

[Reinforced masonry structural wall building] : Provide welded GI wire mesh as per specification ((100mm X 100 mm Square Mesh, 16 Gauge) on both side of wall panel and anchored them sufficiently. Apply plastering layer of mortar mixture of 1:4 to 1:6 (cement to sand ratio). The thickness of plaster varies 15 mm to 20 mm on inner face of wall and 20 to 30 mm on outer face of walls. The construction sequence are mentioned in exception/correction manual], published by NRA.

Figures : Jacketing of HCB building using GI wires and plaster

Jacketing Against Localized Failure

Example 3 Hybrid Structures

[In lower floor] Provide welded GI wire mesh as per specification ((100mm X 100 mm Square Mesh, 16 Gauge) on both side of wall panel and anchored them sufficiently. Apply plastering layer of mortar mixture of 1:4 to 1:6 (cement to sand ratio). The thickness of plaster varies 15 mm to 20 mm on inner face of wall and 20 to 30 mm on outer face of walls. The construction sequence are mentioned in exception/correction manual], published by NRA.

[In upper floor] provide diagonal bracing as per specification (refer, Light Timber/Steel Frame Structure Manual).

This Page is Intentionally Left Blank

PART-6 : READY TO USE DESIGNS

This section presents design summary for HCB masonry building which requires correction and reinforcement requirement for HCB buildings to be built as per Nepal NBC 2002 : 1994:

[Typical description of building]

- Number of storey : 2
- Storey height : 2.50 m (maximum)
- Total height : 5.00m
- Unsupported wall length: 4.05 m (maximum)
- Plinth area : 100.00 sq.m.

The following details shall be followed in placing the horizontal and vertical steel in HCB masonry using cement mortar:

Summary of Correction Design

Table 1 : Summary of Seismic Belts Design

Table 1(A): Horizontal Bands Details (applicable for correction)

S.N.	Length or Wall		einforcement in Horizontal bands with overlapping of Ld mm				
	In meter	Concrete Size (mm)	Rebar (No & diameter)				
1.	<u>< 4</u> .05	150 x 40	3#7Ø				
Note : Materia bars @ 150 m :	l grade : M20 and Fe 5 spacing.	00 or 415 , ties 4.	75 mm diameter				

Table 1 (B): Rebar in RC vertical splint with overlapping of Ld mm,								
SN	No. of store y	Storey	At T- Junction Concrete size 250x40		At Corner Junction Concrete size 250x40		At near opening Concrete size 150x40	
Concrete Grade M 20, Rebar Grade Fe 500		No	Bar Ø (mm)	No	Bar Ø (mm)	No	Bar Ø (mm)	
1	One		3	7	3	7	2	7
2.	One plus attic	Attic	3	7	3	7	2	7
		Ground	3	7	3	7	2	7
3.	Two	First	3	8	3	8	2	8
		Ground	3	8	3	8	2	8
4.	Three	Second						
		First	Design Specific					
		Ground						
Note :1) Material grade : M20 and Fe 500 or 415 , ties 4.75 mm diameter bars @ 150 mm spacing.								

Table 2 : Summary of Seismic Belts Design

Table 2(A): Horizontal Bands Typical Details (applicable for new construction)

		/				
S.N.	Length or Wall	Reinforcement in Horizontal bands with overlapping of Ld mm				
	In meter	Concrete Size (M20) (mm)	Rebar & stirrups (Fe 500)			
1.	<u>< 4</u> .05	150 Thk	4#12Ø (stirrups 6mm dia @ 150 mm spacing c/c)			

Note : The horizontal bands can be provided as per NBC 202:2015.

Table 2(B) : Vertical Reinforcement with overlapping of Ld mm,									
SN	N	lo. of storey	Storey	At T- Junction		At Corner Junction		At near opening	
Concrete Grade M 20, Rebar Grade Fe 500		No	Bar Ø (mm)	No	Bar Ø (mm)	No	Bar Ø (mm)		
1	0)ne		1	10	1	10	1	10
2.		One plus attic	Attic	1	10	1	10	1	10
	at		Ground	1	12	1	12	1	12
3.	T	wo	First	1	12	1	12	1	12
			Ground	1	12	1	12	1	12
4.	T	hree	Second	1	12	1	12	1	12
			First	1	12	1	12	1	12
			Ground	1	12	1	12	1	12

The vertical bars specified in above table shall be located conveniently inside the cavities of the hollow blocks. The cavities containing bars are to be filled by using a concrete mix of (1:2;4) or cement course-sand mortar (1:3), and are properly compacted.

Source ; [NBC 202:1994]

This Page is Intentionally Left Blank

ANNEX A: HCB UNIT QUALITY TEST AT SITE

[Annex A: User's Guidelines for Quality Tests]

A.1 Drop Test A.2 Visual Test A.3 Cutting Test

A.1 Drop Test

Drop 5 blocks from 1.50 m height on hard surface (concrete surface) : MORE THE PIECES LESS THE STRENGTH

When drop from chest height.

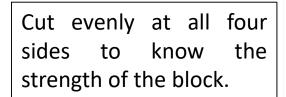
Acceptable quality (less than 1 HCB broken)

Also, drop from head height.

Poor quality (more than 1 HCB broken)

A.2 Visual Test

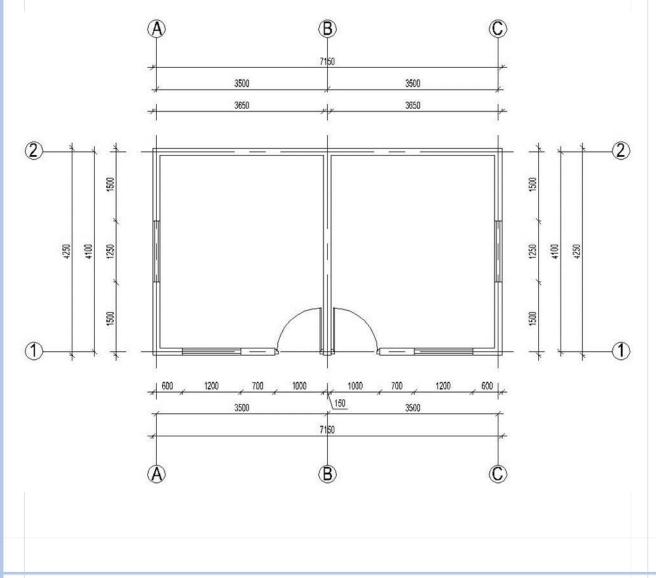
Press the corner of the block. It should not break.

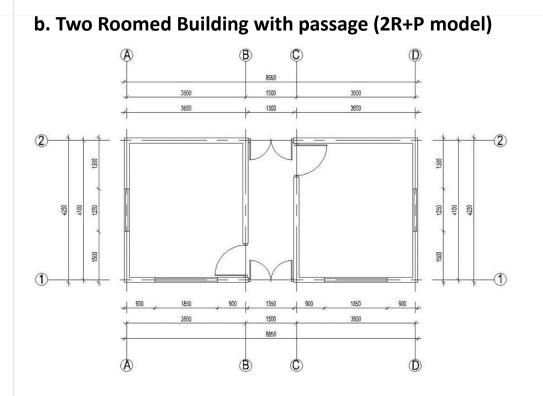

[If no practice columns are casted], Press the corner of the block in actual construction site where block edge is exposed or remove plaster (if required).

A.3 Cutting Test

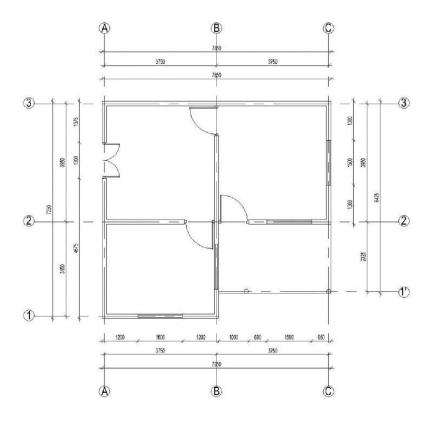
Cut the block with chisel at the centre as shown beside. Block should always break only in two pieces. If it breaks into many pieces, it indicates low strength.

More the cutting depth of the block, more the strength.

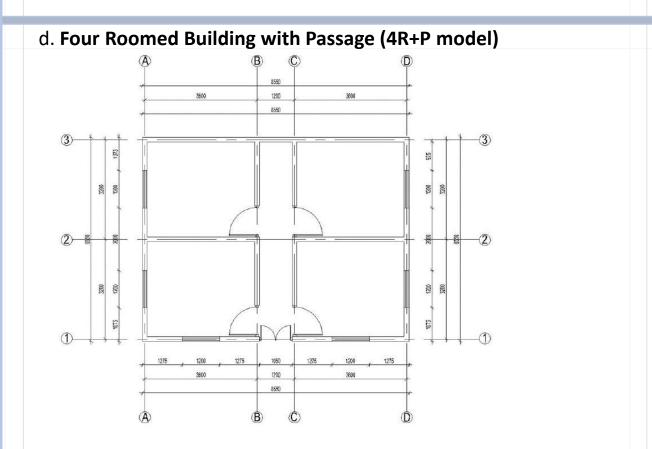

ANNEX B : STRUCTURAL ANALYSIS AND DESIGN

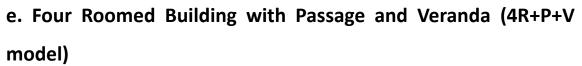

This section presents representative sample calculation referred in structural analysis and design of existing building as well as new buildings.

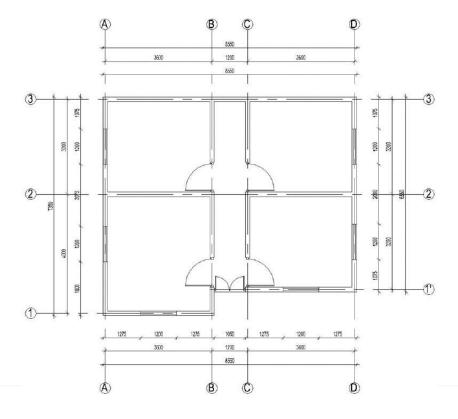
Description of existing building:


consisting team engineers from Housing Α Recovery and Reconstruction Platform (HRRP)-Nepal, engineers from National Reconstruction Authority (NRA) and local representatives visited Rupa Gaupalika, Annapurna Gaupalika and Pokhara-Lekhnath Metropolitan City of Kaski district from 30th July to 3rd August 2018. Most of the existing buildings at the site are one storeyed and two storeyed, load bearing structures with flexible roof and majority of them are represented by either of the models presented below:

a. Two Roomed Building (2R model)






c. Three Roomed Building with Veranda (3R+V model)

ANNEX B : STRUCTURAL ANALYSIS AND DESIGN

In this Annex, we will discuss all the details regarding Four roomed building with Passage and Veranda (4R+P+V model) and moreover, all the procedures followed during design of other four types buildings are same as followed for 4R+P+V model.

Dimensions:

This considered building has a planar dimensions of 8.4 m X 7.2 m, and the storey height of the building is 2.8 m and the gable height is one meter.

Walls:

The thickness of internal and external walls is six inches, which is the width of block. The longest dimension of the room of the considered building is 4 m. The top of sill level is 1 m and the spandrel height is 0.6 m. This is a load bearing structure; thus, walls are the structural elements in this building.

Material Properties:

<u>HCB Walls</u> Unit weight = 16 kN/m³ [from test, IOE/TU] Modulus of elasticity =27x10⁵ kN/m² Compressive strength = 0.321 MPa [from test, IOE/TU]

Wood

The wood used in modelling is chir wood with following properties: Unit weight = 5.75 kN/m^3 Modulus of elasticity =9600000 kN/m² Bending strength (inside location) = 8.2 MpaCompressive strength (inside location) = 6.3 MpaShear strength, horizontal in beams = 0.6 MpaShear strength, along grain = 0.9 Mpa*References: NBC 112 (1994)*

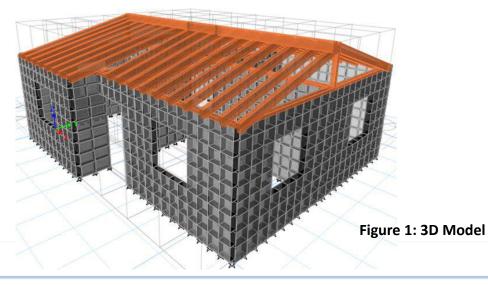
<u>Roofing material</u> Type = CGI sheet Unit weight = 0.056 kN/m² (*References: IS 875 Part I, T-1.39, for 0.63 mm, Class 1*)

Modelling:

Loads Live load in roof = 0.75 kN/m2

Design Horizontal Seismic Coefficient (NBC 105:1994)

			i	
Zone factor	Z	1		Figure 8.2
				cl 8.1.7, table 8.1, other
Importance factor	Ι	1		structures
Structural performance		2 5		
factor	K	2.5		for Retrofitted Masonry
Height of the building	h	2.8	m	Refer dwg.
Dimension of the				
building along X	D _x	8.4	m	Refer dwg.
Dimension of the				
building along Y	D _v	7.2	m	Refer dwg.


Time period of the	_		se	
building along X	T _x	0.087	с	Tx = 0.09h/vDx, Cl 7.3
Time period of the	Ŧ		se	
building along Y	Т _у	0.094	с	Ty = 0.09h/√Dy, Cl 7.3
		Soft (Type		
Soil type		III)		Cl 8.1.5
Basic seismic coefficient				
along X	C _x	0.08		Cl 8.1.4, fig 8.1
Basic seismic coefficient				
along Y	Cv	0.08		Cl 8.1.4, fig 8.2
Design horizontal seismic				
coefficient	C _d	0.2		Cd = CZIK, Cl 8.1.1

Assumptions:

•All the rafters, purlins, joists, posts are assumed to be simply supported i.e. torsional capacity is released at one end whereas moment capacity is released at both ends.

•In field, some buildings have 230 mm columns in all corners with 4-12 mm bars; during analysis these columns are not taken into consideration; however, the capacity of four bars is checked against the corner requirements as suggested by the design.

•The support system, line foundation, is assumed to be Hinge system. The modelling of the 4R+P+V model is done by using ETABS 2016 Version 16.2.1. The 3D view of the model is shown below:

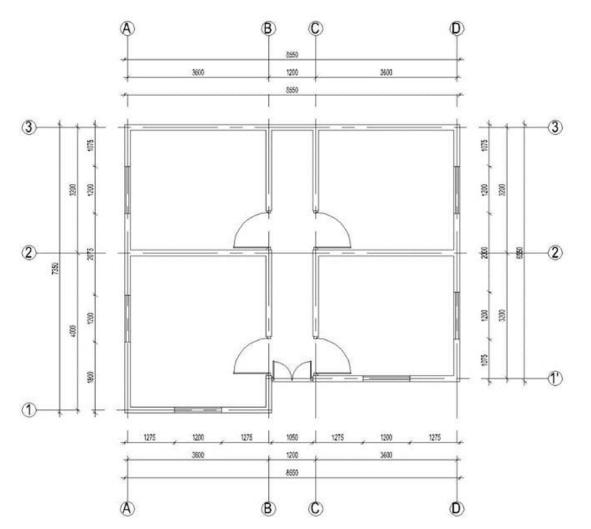
Analysis:

The analysis of the building is done by using ETABS 2016 Version 16.2.0. Seismic Coefficient Method is used to analyse the building in earthquake load.

Calculation of Base Shear

Load		Directio		Weight	Base
Pattern	Туре	n	С	Used	Shear
				kN	kN
			0.		
EQx	Seismic	Х	2	287.00	57.4
			0.		
EQy	Seismic	Y	2	287.00	57.4

Load combinations for the analysis of the building:


The design loads for the Working Stress Method as per NBC 105:1994 are:

- Including the Earthquake Load
- DL+LL+EQx
- DL+LL-EQx
- DL+LL+Eqy
- DL+LL-EQy
- 0.7DL+EQx
- 0.7DL-EQx
- 0.7DL+EQy
- 0.7DL-EQy

After subjecting the model to aforementioned load combinations, inplane stress, out-plane stress was read out for all the walls, and on the basis of stress values extracted from the model, all the necessary checks were done, and the design was suggested.

Sample calculations:

Wall chosen for explanation of design (to be replaced by Autocad drawings)

In-plane stress check:

Wall Identity: X1

Pier: P1

Check in Tension:

Average Tensile stress, T (N/mm2): 0.065

Corresponding zone, z: 1200 mm

Thickness of wall, t: 152.4 mm (6-inch block)

Induced Tensile force: T*z*t= 11.89 kN

fy= 415 Mpa

dia of rebar considered = 2-4.75 mm

Area, A = 35.44 mm2

Allowable tensile strength of Fe-415 rebars, ta = 230 Mpa

(Ref: IS 456: 2000, T-22)

Tensile strength of splint: 1.25 * ta *A = 10.2 kN

Since, splints are provided on inner and outer surface of the wall, there will be at least two number of splints in a pier, therefore, minimum tensile strength of the pier= 2*10.2 = 20.4 kN > 11.89 kN, **Safe**

Check in Compression:

Compressive strength of hollow block wall: 0.321 MPa equivalent to brick strength taken, though from the compressive strength test of hollow block wallet, the ultimate compressive strength obtained from minimum compression load among three sample is: 0.8 MPa

Average compressive stress, C (N/mm2): 0 < 0.321 MPa., safe.

Similarly, same process is repeated for all the piers.

Out of plane stress check:

Horizontal bending Check:

Wall: X1 Bending stress induced at lintel level: 0.61 kN-m/m tributary width: 1 m wall thickness: 152.4 mm Moment induced: 0.61*1= 0.61 kN-m. fy: 415 Mpa fta: 230 Mpa fca: 190 Mpa (Ref: IS 456: 2000, T-22) dia of rebar considered = 2-4.75 mm Area, A = 35.44 mm2 Tensile strength, T: 1.25*230*35.44/1000= 10.19 kN/m z= t+c= 152.4+40= 192.4 mm where, t is thickness of wall and c is the micro-concreting thickness Moment capacity: T*z= 10.19*192.4 =1.96 kN-m/m > 0.61 kN-m/m Safe. Similarly, all walls are checked against horizontal out of plane bending.

Vertical bending check:

Wall: X1

Pier: P1

Tributary width: 0.6 m

for DL+LL+EQy,

Tensile stress: 0.11 Mpa

Compressive stress: 0.13 Mpa

Tension zone: 0.11/ (0.11+0.13) *152.4= 69.85 mm

Compression zone: 82.55 mm

Tension force, T: 1/2*69.85*0.11*0.6*1000/1000= 2.31 kN

Design compressive stress= 0 (Since, 0.13-0.321 < 0)

Compression force, C: 0

taking Fe 415 into consideration,

fta: 230 Mpa

fca: 190 Mpa

Tension capacity of splint for 2-4.75 mm bars: 1.25*fta*Area of bars: 10.19

kN > 2.31 kN, **Safe**

Similarly, same pier is checked for all load combinations producing out of plane effect. Furthermore, same process is repeated for all the piers. All the calculations are presented below:

	Check			OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK
	Comp. Strength of band		KN		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417
	Tensile Strength § of band		KN	20.379		20.379		10.189		10.189		10.189		10.189		20.379		10.189		10.189	
	fca		N/mm ²	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00
	fta		N/mm ² N/mm ²	230.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00 190.00	230.00 190.00
	V		mm ²]	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44
	Nos			-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	-
	9		mm	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75
	Nos					-	1	1	-	1	1	-	1	1		1	-	1	-	1	
	φl		1 ² mm	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75
le)	fy		N/mm ²	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415
Design for stress S22 (In-plane)	Induced Force		KN	11.89	0.00	18.29	1.55	1.83	0.00	1.22	0.00	0.00	0.00	0.23	0.00	7.32	0.00	1.52	0.00	4.11	0.00
s S22	Wall	Th.	mm	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152	152
stres	Zone		шш	1200	1200	1200	1200	600	1200	400	1200	0	3600	300	3600	2400	3600	500	1200	1800	3600
ign for	Max. Avg Stress		N/mm^2	0.065	0.000	0.100	0.008	0.020	0.000	0.020	0.000	0.000	0.000	0.005	0.000	0.020	0.000	0.020	0.000	0.015	0.000
Des	EQx	Zone	mm	1200	1200	1200	1200	600	1200	300	1200	0	3600	300	3600	2100	3600	1200	1200	1800	3600
	0.7DL-EQx	Stress	N/mm ²	0.07	0.10	0.15	0.09	0.04	0.07	0.03	0.09	0.00	0.04	0.01	0.04	0.03	0.04	0.03	0.04	0.03	0.04
	ŦQx	Zone	mm	1200	1200	1200	1200	300	1200	400	1200	0	3600	0	3600	400	3600	600	1200	500	3600
	0.7DL+EQx	Stress	N/mm ²	0.10	0.14	0.05	0.11	0.03	0.09	0.04	0.06	0.00	0.05	0.00	0.04	0.02	0.03	0.02	0.02	0.01	0.05
	L-EQx	Zone	mm	1200	1200	1200	1200	300	1200	300	1200	0	3600	0	3600	2400	3600	500	1200	1200	3600
	DL+LL-EQx	Stress	N/mm^2	0.11	0.14	0.20	0.24	0.04	0.08	0.02	0.11	0.00	0.06	0.00	0.05	0.04	0.06	0.04	0.06	0.03	0.06
	+EQx	Zone	mm	1200	1200	1200	1200	300	1200	300	1200	0	3600	0	3600	600	3600	600	1200	600	3600
	DL+LL+EQx	Stress	N/mm ²	0.13	0.18	0.11	0.15	0.01	0.10	0.02	0.07	0.00	0.07	0.00	0.06	0.02	0.05	0.02	0.03	0.01	90.0
	Stress			Tension	Compression	Tension	Compression	Tension	Compression	Tension	Compression	Tension	Compression	Tension	Compression	Tension	Compression	Tension	Compression	Tension	Compression
	Wall			V1. D1	-	V1. D1		V). D1		CD.CV		V2. D1		V2. D1	21:00	V1. D1	A4. F1	V1. D1	-	V.A. D2	Q.4V

ANNEX B : STRUCTURAL ANALYSIS AND DESIGN

	Check			OK	OK																						
	Compres sive Strength of band		KN		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417		8.417
	Tensile Strength of band		KN	20.379		10.189		10.189		10.189		10.189		10.189		10.189		20.379		10.189		10.189		10.189		10.189	
	fca		N/mm ²	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00	190.00
	fta		N/mm ²	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	35.44 230.00 190.00
	A		mm ²]	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44
	Nos			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
	e-			4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75
	Nos					1	1	1	1	1	1	-	1	1	1	-	1	1	1	1	1	1	-	1	1	1	
	φl		² mm	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75
lane)	ţ		N/mm ²	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415
Design for stress S22 (In-plane)	Wall Induced Force		KN	12.08	0.00	1.38	00'0	1.04	0.00	2.30	00'0	4.03	4.32	2.88	0.00	5.64	0.00	11.50	0.00	2.30	00'0	1.84	0.00	1.38	0.00	2.88	0.00
ess Si		Th.	mm	230	350	230	350	230	350	230	350	230	350	230	350	230	350	230	350	230	350	230	350	230	350	230	350
r stre	Zone		mm	1500	1800	400	1000	300	1000	400	1000	500	915	500	2100	700	2100	1000	2100	400	1000	400	1000	300	1000	500	1000
sign fo	Max. Avg Stress		N/mm^2	0.035	0.000	0.015	0.000	0.015	0.000	0.025	0.000	0.035	0.014	0.025	0.000	0.035	0.000	0.050	0.000	0.025	0.000	0.020	0.000	0.020	0.000	0.025	0.000 1000
ã	EQY	Zone	mm	1500	1800	300	1000	300	1000	300	1000	500	915	400	2100	300	2100	300	2100	500	1000	300	1000	300	1000	300	1000
	0.7DL-EQY	Stress	N/mm^2	0.06	0.08	0.02	0.08	0.02	0.05	0.02	0.07	0.07	0.17	0.02	0.13	0.02	0.12	0.04	0.17	0.05	0.07	0.03	0.10	0.04	0.06	0.03	0.08
	EQY	Zone	mm	300	1800	400	1000	300	1000	400	1000	300	915	500	2100	700	2100	1000	2100	300	1000	400	1000	300	1000	500	1000
	0.7DL+EQY	Stress	N/mm^2	0.020	0.09	0.030	0.05	0.030	0.08	0.050	0.06	0.040	0.10	0.050	0.06	0.070	0.05	0.100	0.05	0.030	0.08	0.040	0.05	0.030	0.10	0.050	0.06
	L-EQy	Zone	mm	1500	1800	300	1000	0	1000	200	1000	400	915	0	2100	300	2100	400	2100	400	1000	300	1000	300	1000	300	1000
	DL+LL-EQy	Stress	N/mm^2	0.07	0.09	0.01	0.10	0.00	0.06	0.01	0.08	0.06	0.25	0.00	0.15	0.02	0.13	0.04	0.19	0.05	0.08	0.03	0.12	0.02	0.06	0.02	0.10
	+EQy	Zone	mm	400	1800	300	1000	300	1000	300	1000	0	915	300	2100	500	2100	700	2100	200	1000	200	1000	300	1000	300	1000
	DL+LL+EQy	Stress	N/mm ²	0.01	0.09	0.01	0.06	0.03	0.11	0.04	0.08	0.00	0.11	0.03	0.09	0.06	0.06	0.08	0.06	0.02	0.09	0.02	0.06	0.03	0.12	0.04	0.08
	Stress			Tension	Compression																						
	Wall			VA · DI	11-01	V4 - D1	71.01	VA- P3		VA - DA		VB: DI		VB. D)	1D.12	VD: D2	CT-01	VC- PI	11.01		11.01	vn. py	71.01	VD: P3	CT-71	VD- DA	

	Check Moment			OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK
	Moment of Resistance of wall	KN-m/m		1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960
	z	mm		192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4
	Tensile Strength	KN/m	strip/face	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189
	fta	N/mm^2		230.00	1.00 35.44 230.00	1.00 35.44 230.00	230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00
	A	mm ²		35.44	35.44	35.44	1.00 35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44	35.44
	n2	nos		1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
	φ2	mm		4.750	4.750	4.750	4.750	4.750	4.750	4.750	4.750	4.750	4.750	4.750	4.750
	nl	nos			1			1			1			1	
	φl	a ² mm		4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	415 4.75
	ţ	N/mm^2		415	415	415	415	415	415	415	415	415	415	415	
e)	t Wall Thk.			152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4
ut of plan	Moment Induced (M11)		KNm	0.460	0.610	0.183	0.180	0.400	0.180	0.315	0.500	0.195	0.288	0.770	0.405
r MII(O		IIW	KNm	0.345	0.500	0.150	0.180	0.300	0.105	0.315	0.450	0.195	0.180	0.250	0.180
Design for M11(Out of plane)		0.7 DL- EQy	kNm/m	0.300	0.500	0.500	0.200	0.300	0.350	0.350	0.450	0.650	0.200	0.250	0.600
		MII	KN/m	0.460	0.610	0.183	0.180	0.400	0.180	0.315	0.500	0.195	0.135	0.170	0.120
	max)	DL+LL-EQy	kNm/m	0.400	0.610	0.610	0.200	0.400	0.600	0.350	0.500	0.650	0.150	0.170	0.400
	Moments M11 (max)		KN/m	0.069	0.070	0.075	0.135	0.190	0.057	0.270	0.500	0.195	0.225	0.650	0.345
	Mome	0.7 DL+EQy	kNm/m	090'0	0.070	0.250	0.150	0.190	0.190	0.300	0.500	0.650	0.250	0:650	1.150
		MII	KN/m	0.092	0.080	090.0	0.173	0.170	090.0	0.230	0.500	0.186	0.288	0.770	0.405
		Width	н	1.150	1.000	0.300	1.150	1.000	0.300	1.150	1.000	0.300	1.150	1.000	0.300
		DL+LL+EQY	kNm/m	0.080	0.080	0.200	0.150	0.170	0.200	0.200	0.500	0.620	0.250	0.770	1.350
	Walls			Sill	X1 Lintel	Floor	Sill	X2 Lintel	Floor	Sill	X3 Lintel	Floor	Sill	X4 Lintel	Floor

5
l
1
1
5
)
i

Check Moment			OK	OK	OK	OK	OK	OK	OK	OK	ОК	OK	Ø	oK
Moment of Resistance of wall	KN-m/m		1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960	1.960
R	M		192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4	192.4
Tensile Strength	KN/m	strip/face	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	10.189	4.750 1.00 35.44 230.00 10.189
fta	mm ² N/mm ²		230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00	230.00
A	mm ²		1.00 35.44	1.00 35.44	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	1.00 35.44	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	4.750 1.00 35.44 230.00	35.44
51				1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00
φ2	mm		4.750	4.750	4.750	4.750		4.750	4.750	4.750	4.750	4.750	4.750	4.750
1						1					1			-
φ]	2 mm		4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.75
ţ	N/mm ²		415	415	415	415	415	415	415	415	415	415	415	415
Wall Thk.			152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4
Moment Induced (MII)	Ì	KN/m	0.403	0.600	0.300	0.403	0.550	0.240	0.345	0.500	0.180	0.345	0.450	0.165
	IIM	KN/m	0.230	0.400	0.300	0.115	0.400	0.180	0.345	0.500	0.165	0.345	0.450	0.150
	0.7 DL- Eqx M11	kNm/m	0.200	0.400	1.000	0.100	0.400	0.600	0.300	0.500	0.550	0.300	0.450	0.500
	IIM	KN/m	0.230	0.400	0.180	0.288	0.500	0.240	0.345	0.500	0.180	0.345	0.450	0.165
max)	DL+ LL- Eqx	kNm/m	0.200	0.400	0.600	0.250	0.500	0.800	0.300	0.500	0.600	0.300	0.450	0.550
Moments MI1 (max)	MII	KN/m	0.403	0.450	0.165	0.403	0.550	0.180	0.345	0.400	0.150	0.288	0.400	0.150
Mome	0.7 DL+ Eqx	kNm/m	0.350	0.450	0.550	0.350	0.550	0.600	0.300	0.400	0.500	0.250	0.400	0.500
	IIM	KN/m	0.150	0.600	0.270	0.345	0.550	0.180	0.345	0.400	0.165	0.311	0.400	0.150
	Width	я	1.150	1.000	0.300	1.150	1.000	0.300	1.150	1.000	0.300	1.150	1.000	0.300
	DL+LL+Eqx	kNm/m	0.130	0.600	006.0	0.300	0.550	0.600	0.300	0.400	0.550	0.270	0.400	0.500
Walls			Sill	Lintel	Floor	Sill	Y2 Lintel	Floor	Sill	Y3 Lintel	Floor	Sill	Y4 Lintel	Floor

	Check		ð	ð	K	ð	K	Ø	QK	OK	ð	ð	ð	ð	ð	ð	ð	OK	OK	OK	ð	ð	QK	QK	QK	QK	ð	QK	ð	ð	ĸ	ð	QK	QK	ð	ġ	OK	ð
	Tension Capacity	ĸ	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19	10.19
	Nos of Bar		~	~	~	~	~	2	2	2	2	~	2	~	2	~	2	2	2	2	2	2	~	2	2	2	~	2	2	2	2	2	2	2	2	2	2	2
		6 6	°.	4 . 8,	4.8	\$	4 .8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	8 .4	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
	Compressi ve Strength	Mpa	190	130	190	130	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190
	Tensile Strength	Mpa		230	230	230	230					230			230							230		230		230					230						230	
	5	ē	₽	₽	415	₽2	415	415	415	415	415	415	415	₽	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	45	415	415	415	415	415	415
Force	Comp (C)	X	0.0	0.0	0.0	0.0	0.0	0.00	0.0	0.00	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.00	2.39	0.00	0.00	0.00	2.97	0.32	0.0	0.00	5.67	0.33	0.00	0.00	0.00	0.00	0.0	0.00	0.36	0.0	0.00	000
Design Force	Tension (T)	KN	2.31	2.21	1.40	1.24	3.32	4.34	1.95	2.86	0.49	0.29	0.56	0.52	0.30	0.46	0.67	0.14	0.65	1.91	2.60	2.02	0.63	1.59	3.36	3.36	0.56	1.14	1.22	0.82	0.52	0.03	0.52	0.82	0.44	1.71	0.09	0.82
	Design Comp Stress	Mpa	0.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00'0	0.00	0.00	0.00	00'0	0.00	00'0	0.00	0.08	0.00	00'0	0.00	0.09	0.03	0.00	0.00	0.13	0.03	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.0
	Design Tensile Stress	Mpa	0.11	0.11	0.07	0.07	0.15	0.19	0.09	0.13	0.04	0:04	0.04	0:04	0.04	0.03	0.04	0.02	0.04	0.05	0.06	0.05	0.04	0.06	0.07	0.07	0.04	0.05	0.04	0.03	0.04	0.01	0.04	0.03	0.03	0.05	0.01	0.03
	Comp Zone	Ē	82.55	85.34	85.73	93.13	78.66	76.20	80.21	79.02	111.76	128.02	105.51	108.86	127.00	101.60	96.98	128.95	134.47	110.07	104.27	107.58	134.98	122.90	99.06	99.06	136.77	127.00	118.53	121.92	108.86	142.88	108.86	60.96	136.07	114.30	142.88	121.92
	Tension	Ē	69.85	67.06	66.68	59.27	73.74	76.20	72.19	73.38	40.64	24.38	46.89	43.54	25.40	50.80	55.42	23.45	17.93	42.33	48.13	44.82	17.42	29.50	53.34	53.34	15.63	25.40	33.87	30.48	43.54	9.53	43.54	91.44	16.33	38.10	9.53	30.48
	Compressive . Stress	Mpa	0.13	0.14	0.09	0.11	0.16	0.19	0.10	0.14	0.11	0.21	0.09	0:10	0.20	90:0	0.07	0.11	0.30	0.13	0.13	0.12	0.31	0.25	0.13	0.13	0.35	0.25	0.14	0.12	0.10	0.15	0.10	0.02	0.25	0.15	0.15	0.12
	Tensile Stress	Mpa	0.11	0.11	0.07	0.07	0.15	0.19	0.09	0.13	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.02	0.04	0.05	0.06	0.05	0.04	0.06	0.07	0.07	0.04	0.05	0.04	0.03	0.04	0.01	0.04	0.03	0.03	0.05	0.01	0.03
	Tributary	E	09.0	0.60	0.60	09.0	0.60	09.0	0.60	0.60	09.0	09.0	09.0	09.0	09.0	09.0	09.0	0.60	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	1.80	09.0	09.0	0.60	0.60	1.80	1.80	1.80	180
		Ē	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4
	Combination Thickness of Vall		DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQy	DL+LL+EQy	DL+LL-EQy	0.7DL+EQy	0.7DL-EQ1
	Pier			č	-			ĥ	u L			ŏ	-			ĥ	J			ō	-			ĥ	u L			ō	-			ĥ	u L			ű	-	
	Vall					5	ż							\$	ų							\$	2									5	ţ					_

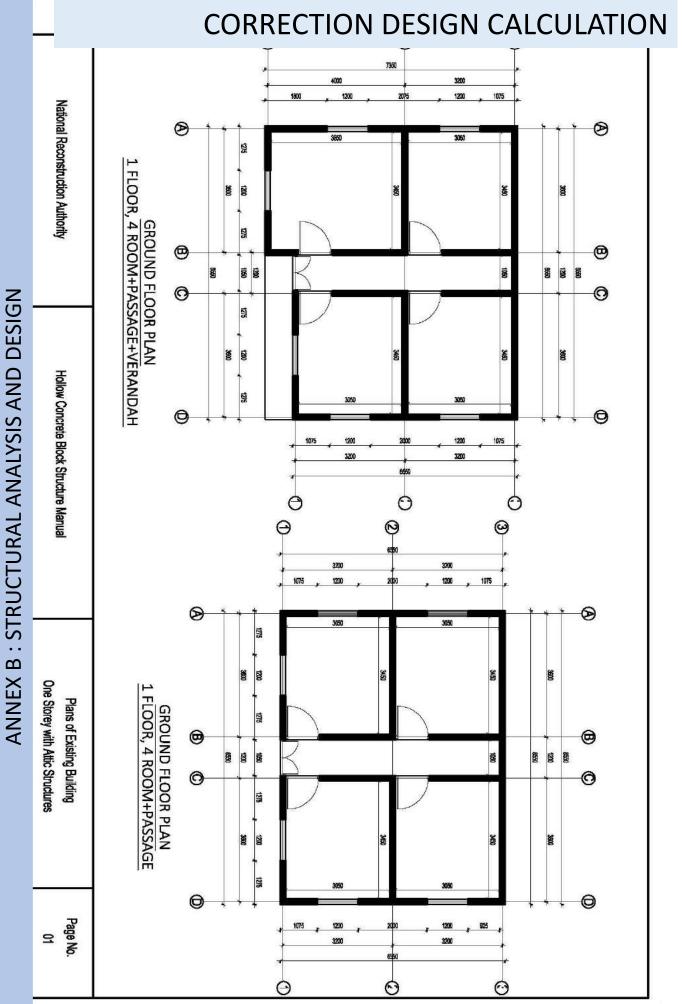
ANNEX B : STRUCTURAL ANALYSIS AND DESIGN

CORRECTION DESIGN CALCULATION

Γ	<u>+</u>																													
	Check		OK	OK	OK	ð	ð	Ø	OK	OK	OK	OK	OK	ð	OK	OK	OK	OK	Ø	OK	ð									
	Tension Canacitu	KN	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28
	Nos of Bar		3	3	3	3	9	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
	÷	EE	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
	Compressi ve Strenath	Mpa	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190
	Tensile Strength	Mpa	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230
		ΩZ	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415
	Comp.	Š	0.00	0.00	0.00	0.00	0.01	0.19	0.00	0.00	0.01	0.19	0.00	0.00	1.96	1.21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	Design Force Tension Com (T) (C)	XN X	2.31	0.31	2.58	0.78	0.02	0.01	0.05	0.03	0.02	0.05	0.05	0.03	0.23	0.10	0.10	0.03	0.02	0.02	0.26	0.04	0.05	0.06	0.30	0.34	0.30	0:30	0.42	0.37
plane)	Design Comp Stress	Mpa	0.00	0.00	0.00	0:00	0.01	0.04	0.00	0.00	0.01	0.04	0.00	0.00	0.15	0.11	0.00	0.00	0:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
(Out of plane)	Design Tensile Stress	Mpa	0.09	0.03	0.08	0.04	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.03	0.02	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02
or 522	Comp Zone	Ē	95.25	129.54	80.68	108.86	146.05	146.76	130.63	138.55	146.05	141.51	130.63	138.55	134.26	139.70	132.08	139.70	143.44	143.44	117.23	135.47	142.88	142.24	124.69	121.92	124.69	124.69	114.30	118.53
Design for 522	Tension Zone	E	57.15	22.86	71.72	43.54	6.35	5.64	21.77	13.85	6.35	10.89	21.77	13.85	18.14	12.70	20.32	12.70	8.96	8.96	35.17	16.93	9.53	10.16	27.71	30.48	27.71	27.71	38.10	33.87
	Compressive . Stress	Mpa	0.15	0.17	0.09	0.10	0.23	0.26	0.06	0.10	0.23	0.26	0.06	0.10	0.37	0.33	0.13	0.11	0.16	0.16	0.10	0.08	0.15	0.14	0.09	0.08	0.09	0.09	0.06	0.07
	Tensile Stress	Mpa	0.09	0.03	0.08	0.04	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.03	0.02	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.02	0.02
	Tributarg	E	0.9	0.9	0.9	0.9	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
	Thickness of Vall	Ē	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4
	Pier Combination Thickness of Vall		DL+LL+Eqx	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQx	DL+LL+Eq×	DL+LL-Eq×	0.7DL+Eqx	0.7DL-EQx	DL+LL+Eqx	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQx	DL+LL+Eqx	DL+LL-Eq×	0.7DL+Eqx	0.7DL-EQx	DL+LL+Eqx	DL+LL-Eq×	0.7DL+Eqx	0.7DL-EQx	DL+LL+Eqx	xb3-rr+rc	0.7DL+Eqx	0.7DL-EQx	DL+LL+Eqx	xb3-11+10	0.7DL+Eqx	0.7DL-EQx
	Pier			ā	-			ĥ	- -			ő	-			ŭ	-			ŏ	-			ò	-			ó	2	
	Vall									۰.×	ç													а >	2					

ANNEX B : STRUCTURAL ANALYSIS AND DESIGN

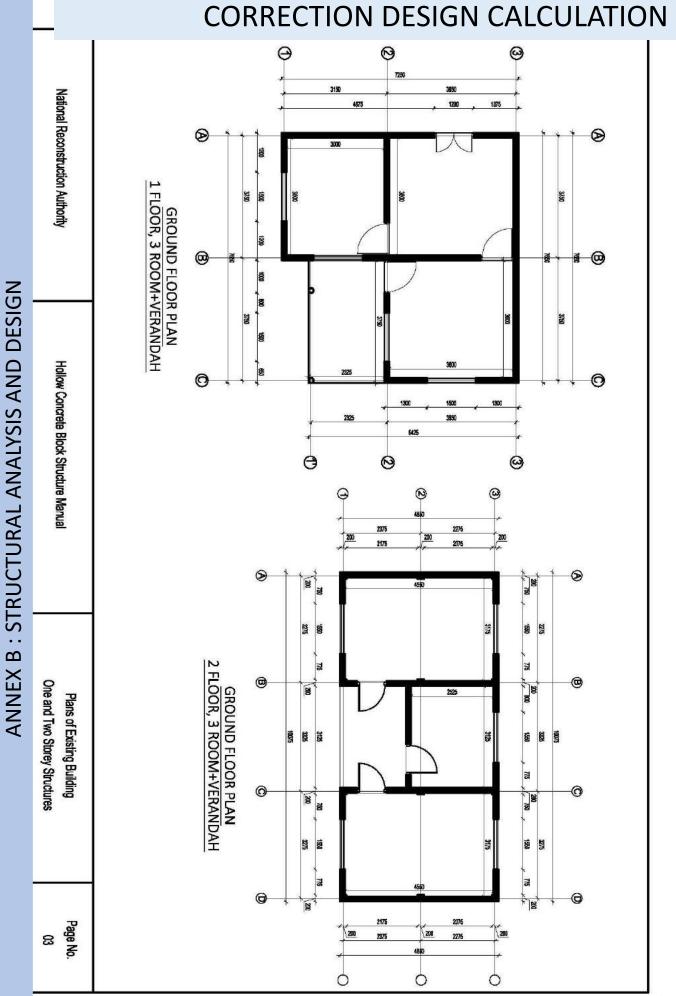
7
Ξ
Ш Ш
_YSIS AND DESIGN
닐
2
$\overline{\mathbf{A}}$
Ë
5
\leq
\leq
1
URAL
\supset
F
STRUCT
Ë
Ś
••
Ω
\times
Ш
\leq
Z
4

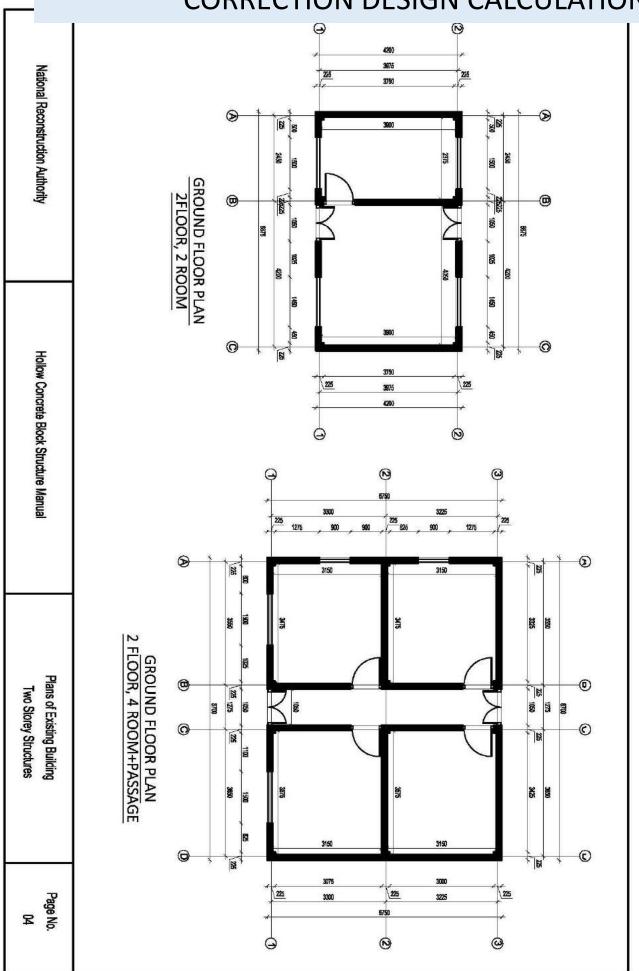

	Check		QK	Ŋ	Ŋ	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	OK	QK	OK	OK	QK
	Tension Capacity	KN	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28	15.28
	Nos of Bar		3	m	m	e		e	e	m	m	e		3	3	m	3	~	e	e	e	e
	÷	EE	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8	4.8
	Compressi ve Strength	Mpa	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190	190
	Tensile Strength	Mpa	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230	230
	E	M pa	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415	415
	Comp.	KN	0.00	0.0	0.0	0.0	0.00	0.0	0.0	0.0	0.19	0.01	0.00	0.00	0.19	0.01	0.00	0.00	1.21	2.01	0.0	0.0
	Design Force Tension Comp (T) (C)	KN	0.10	0.42	0.42	0.48	0.02	0.07	0.03	0.19	0.01	0.06	0.03	0.05	0.05	0.06	0.03	0.05	0.10	0.15	0.03	0.10
plane)	Design Comp Stress	Mpa	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04	0.01	0.00	0.00	0.04	0.01	0.00	0.00	0.11	0.15	0.00	0.00
Design for S22 (Out of plane)	Design Tensile Stress	Mpa	0.01	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.03	0.04	0.01	0.02
or S22	Comp	Ē	133.35	114.30	114.30	108.86	144.78	138.55	138.55	114.30	146.76	140.21	139.70	133.35	141.51	140.21	139.70	133.35	139.70	137.53	139.70	133.35
Design 1	Tension	Ē	19.05	38.10	38.10	43.54	7.62	13.85	13.85	38.10	5.64	12.19	12.70	19.05	10.89	12.19	12.70	19.05	12.70	14.87	12.70	19.05
	Compressive Stress	Mpa	0.07	0.06	0.06	0.05	0.19	0.20	0.10	0.06	0.26	0.23	0.11	0.07	0.26	0.23	0.11	0.07	0.33	0.37	0.11	0.14
	Tensile Stress	Mpa	0.01	0.02	0.02	0.02	0.01	0.02	0.01	0.02	0.01	0.02	0.01	0.01	0.02	0.02	0.01	0.01	0.03	0.04	0.01	0.02
	Tributarg	E	1.1	1.1	1.1	1:1	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	Thickness of Vall	Ē	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4	152.4
	Vall Pier Combination Thickness of Vall		DL+LL+Eqx	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQ%	DL+LL+Eqx	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQ%	DL+LL+Eq×	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQ%	DL+LL+Eqx	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQ%	DL+LL+Eqx	DL+LL-Eqx	0.7DL+Eqx	0.7DL-EQx
	Pier (ـــــــــــــــــــــــــــــــــــــ	 -			 6] 				 			 7	 :	
	Vall F			C) >) -							

Conclusion:

In model 4R+P+V,2-4.75mm bars in splint and bandage are sufficient to resist the developed tension whereas there is no need of compression reinforcements. However In other models such as 3R+V,2R,2-8mm bars are required in splint. Hence for simplification and to address other uncertainities, it is recommended to use 2-8mm bars in splint and bandage for one storey block masonry buildings which use cement mortar.

On the other hand,2-10mm bars are necessary in splint and 2-8m bars are required in bandage for two-storey block masonry buildings in general.

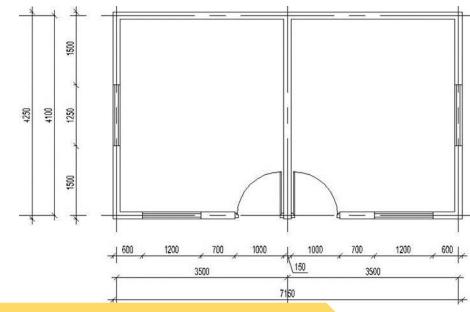

This Page is Intentionally Left Blank



CORRECTION DESIGN CALCULATION Θ National Reconstruction Authority GROUND FLOOR PLAN 1 FLOOR, 2 ROOM+PASSAGE ø ġ Hollow Concrete Block Structure Manual 첑 醬 훐 Θ Θ Θ One Storey with Attic Structures 畿 Plans of Existing Building GROUND FLOOR PLAN 1 FLOOR, 2 ROOM Z 뷶 g ğ ŝ Page No. ខ

ANNEX B : STRUCTURAL ANALYSIS AND DESIGN

Θ


This Page is Intentionally Left Blank

ANNEX C : ESTIMATE OF CORRECTION

This section presents representative sample cost estimate of correction works on existing building.

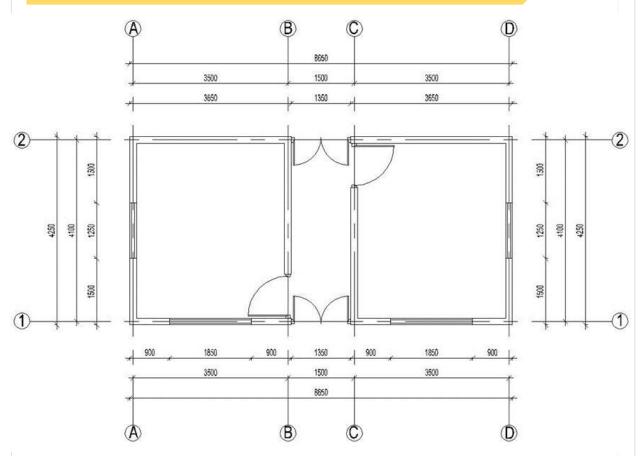
Description of existing building:

A team consisting engineers from Housing Recovery and Reconstruction Platform (HRRP)-Nepal, engineers from National Reconstruction Authority (NRA) and local representatives visited Rupa Gaupalika, Annapurna Gaupalika and Pokhara-Lekhnath Metropolitan City of Kaski district from 30th July to 3rd August 2018. Most of the existing buildings at the site are one storeyed and two storeyed, load bearing structures with flexible roof and majority of them are represented by either of the models presented below:

a. Two Roomed Building (2R model)

[a] Abstract of Cost

ost	Items	Quantity	Calculation	Unit Rate (NRs.)	Amount	Unit
	GI wire(1.63 Dia)	65	25	180	11619.483	kg
oť Č	Cement	10	35+27	750	7455.0468	bag
Ť	Sand	47	29+37	70	3300.318	bag
Abstra	Longitudinal Bars (4.75mm)	15	32	85		kg
٩	Aggregate (10 mm down chips)	8	39	100	<u> </u>	bag
			Total	Amount (NRs.)	24,473.93	


[a] Estimate for Correction Measures

		Est	imate for Correction Meas	ures		Note	e : INPUT
	ion		Length of Building		1	7.15	m
	ens		Width of Building		2	4.25	m
	Dim		Height of Building		3	2.16	m
	rall	Plinth	Number of Long Wall		4	2	number
	Ove		Number of Short wall		5	3	number
	Building Overall Dimension		Total Area of Building	1*4+2*5	6	27.05	m²
	Buil		Total Area of Walls (Elevation)	6*3	7	58.428	m ²
tity			Number of Window		8	4	number
uan		145	Length of Window		9	1.25	m
бþ	u	Window	Height of Window		10	1.25	m
g an	ucti		Area of Window	8*9*10	11	6.25	m ²
dinç	Ded		Number of Door		12	2	number
Buil	Opening Deduction	Door	Length of Door		13	1	m
nt of ∣			Height of Door		14	2.06	m
remr			Area of Door	12*13*14	15	4.12	m ²
Measuremnt of Building and Quantity			Total Area (Deductable)	11+15	16	10.37	m ²
Me	Area		Single Face of Walls	7-16	17	48.058	m²
	Net Area	Wall Area	Double Face of WallS	17+17	18	96.116	m²
	ge		Length [One side)	4*1+5*2	19	27.05	m
			Length (Two side)	19+19	20	54.1	m
	ndaç		Thickness		21	0.04	m
	Tie bandage		Height of Bandage		22	0.15	m
	Tie		Total Volume	19*21*22	23	0.1623	
			Total Volume of Tie Bandage	23+23	24	0.3246	m ³
		Cluving(1, 62, Dia)	Weight Per Unit Area	0.7	25		kg/m ²
	ing	GI wire(1.63 Dia)	Total Weight	25*18	26	65	kg
	cket	0 + (4 D+)	Cement Bag Per Unit Area	0.0764	27		bag/m ²
r.)	Jac	Cement (1 Part)	Net Cement Quantity (Bag)	27*18	28	7	bag
0.0	Wall Jacketing	Sand (6 part)	Sand Bag Per Unit Area	0.45	29		bag/m ²
B) ר			Net Sand Quantity (Cement Bag)	29*18	30	43	bag
Iwo			Weight Per Unit Length	0.14	31		kg/m
ako		Longitudinal Bars (4.75mm)	Number of Main bar		32	2	
Materials Breakdown (B.O.Q.		(4.751111)	Total Weight	32*31*20	33	15.148	kg
ials	Jage	Cement	Cement Bag Per Unit Volume	8	34		bag/m ³
ater	Tie Bandage		Net Cement Quantity (Bag)	24*34	35	3	bag
Ë	ïe E	Sand	Sand Bag Per Unit Volume	12	36		bag/m ³
			Net Sand Quantity (Cement Bag)	36*24	37	4	bag
		Aggregate (10 mm	Aggregate Bag Per Unit Volume	25	38		bag/m ³
		down chips)	Net Agg. Quantity (Cement Bag)	38*24	39	8	bag

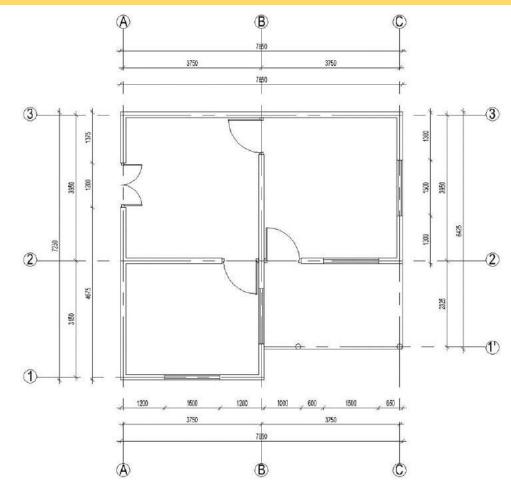
Description of existing building:

Other details are same as previous except passage in the middle as shown in plan below:

[b] Two Roomed Building with passage (2R+P model)

[b] Abstract of Cost

ost	ltems	Quantity	Calculation	Unit Rate (NRs.)	Amount	Unit
	GI wire(1.63 Dia)	76	25	180	13712.334	kg
	Cement	12	35+27	750	8969.0244	bag
ť	Sand	56	29+37	70	3918.726	bag
stra	Longitudinal Bars (4.75mm)	19	32	85	1632.68	kg
	Aggregate (10 mm down chips)	10	39	100	1029	bag
		29,261.76				


[b] Estimate for Correction Measures

			Estimate for Correcti	on Measures			
	u		Length of Building		1	8.65	m
	ensi		Width of Building		2	4.25	m
	Dime		Height of Building		3	2.16	m
	rall	Plinth	Number of Long Wall		4	2	number
	Ove		Number of Short wall		5	4	number
	ling		Total Area of Building	1*4+2*5	6	34.3	m ²
	Building Overall Dimension		Total Area of Walls (Elevation)		7	74.088	m²
ity			Number of Window		8	4	number
uant			Length of Window		9	1.25	m
d Qi	duction	Window	Height of Window		10	1.25	m
g an			Area of Window	8*9*10	11	6.25	m ²
ldinę	Ded		Number of Door		12	4	number
Buil	Opening Deduction	Door	Length of Door		13	1.35	m
Measuremnt of Building and Quantity			Height of Door		14	2.06	m
rem			Area of Door	12*13*14	15	11.124	m²
asu			Total Area (Deductable)	11+15	16	17.374	m ²
Me	Net Area		Single Face of Walls	7-16	17	56.714	m²
	Net	Wall Area	Double Face of WallS	17+17	18	113.428	m²
	Tie bandage		Length [One side)	4*1+5*2	19	34.3	m
			Length (Two side)	19+19	20	68.6	m
			Thickness		21	0.04	m
	e ba		Height of Bandage		22	0.15	m
	Ĕ		Total Volume	19*21*22	23	0.2058	
			Total Volume of Tie Bandage	23+23	24	0.4116	m ³
	_	GI wire(1.63 Dia)	Weight Per Unit Area	0.7	25		kg/m ²
	Wall Jacketing		Total Weight	25*18	26	76	kg
	cke	Cement (1 Part)	Cement Bag Per Unit Area	0.0764	27		bag/m ²
Э	l Ja		Net Cement Quantity (Bag)	27*18	28	9	bag
(B.O.Q.)	Wal	Sand (6 part)	Sand Bag Per Unit Area	0.45	29		bag/m ²
			Net Sand Quantity (Cement Bag)	29*18	30	51	bag
vob		Longitudinal Bars	Weight Per Unit Length	0.14	31		kg/m
eak		(4.75mm)	Number of Main bar		32	2	
s Br	e	, , , , , , , , , , , , , , , , , , ,	Total Weight	32*31*20	33	19.208	kg
rials	dag	Cement	Cement Bag Per Unit Volume	8	34		bag/m ³
Materials Breakdown	Tie Bandage		Net Cement Quantity (Bag)	24*34	35	3	bag
Σ	Tie	Sand	Sand Bag Per Unit Volume	12	36		bag/m ³
			Net Sand Quantity (Cement Bag)	36*24	37	5	bag
		Aggregate (10 mm	Aggregate Bag Per Unit Volume	25	38		bag/m ³
		down chips)	Net Agg. Quantity (Cement Bag)	38*24	39	10	bag

Description of existing building:

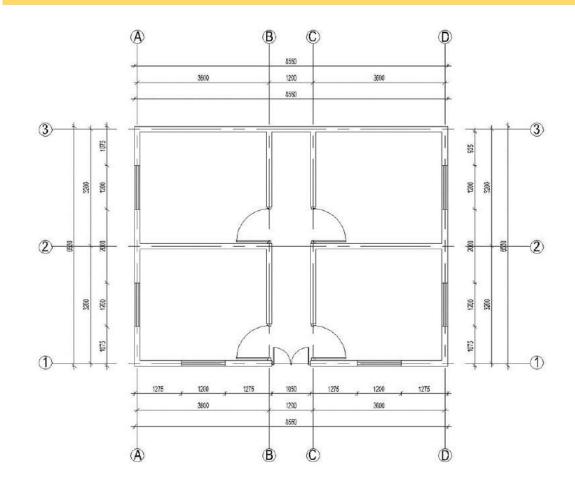
Other details are same as previous except verandah in the middle as shown in plan below:

[C] Three Roomed Building with Veranda (3R+V model)

[C] Abstract of Cost

f Cost	Items	Quantity	Calculation	Unit Rate (NRs.)	Amount	Unit
ost	GI wire(1.63 Dia)	110	25	180	19859.843	kg
oť	Cement	17	35+27	750	12631.644	bag
ċ	Sand	80	29+37	70	5625.396	bag
Abstra	Longitudinal Bars (4.75mm)	25	32	85		kg
٩	Aggregate (10 mm down chips)	13	39	100	1341	bag
			Total	Amount (NRs.)	41,585.60	

[C] Estimate for Correction Measures


			Estimate for Correct	on Measures			
	on		Length of Building		1	7.65	m
	Building Overall Dimension		Width of Building		2	7.25	m
	Dim		Height of Building		3	2.16	m
	rall I	Plinth	Number of Long Wall		4	3	number
	Ove		Number of Short wall		5	3	number
	ling (Total Area of Building	1*4+2*5	6	44.7	m ²
	Builc		Total Area of Walls (Elevation)		7	96.552	
ť			Number of Window			4	number
anti			Length of Window		9	- 1.2	m
Qu	Opening Deduction	Window	Height of Window		10	1.2	m
and			Area of Window	8*9*10	11	5.76	m ²
ing	edu		Number of Door	0 9 10	12	4	number
uild	g D		Length of Door		12	4	m
of B	enin	Door					
nnt	ď		Height of Door		14	2.06	m
urer	6		Area of Door	12*13*14	15	8.652	m²
Measuremnt of Building and Quantity			Total Area (Deductable)	11+15	16	14.412	m ²
Ē	Net Area	Wall Area	Single Face of Walls	7-16	17	82.14	m²
	Net	Wall Alea	Double Face of WallS	17+17	18	164.28	m²
	ge		Length [One side)	4*1+5*2	19	44.7	m
			Length (Two side)	19+19	20	89.4	m
	nda		Thickness		21	0.04	m
	Tie bandage		Height of Bandage		22	0.15	m
	Tie		Total Volume	-	23	0.2682	
			Total Volume of Tie Bandage	23+23	24	0.5364	m³
		Gl wire(1.63 Dia)	Weight Per Unit Area	0.7	25		kg/m ²
	Wall Jacketing		Total Weight	25*18	26	110	kg
	ckei	Comont (1 Dort)	Cement Bag Per Unit Area	0.0764	27		bag/m ²
<u>.</u>	Jac	Cement (1 Part)	Net Cement Quantity (Bag)	27*18	28	13	bag
0.0	Nall	Sand (6 part)	Sand Bag Per Unit Area	0.45	29		bag/m ²
n (B	-	******	Net Sand Quantity (Cement Bag)	29*18	30	74	bag
INO			Weight Per Unit Length	0.14	31		kg/m
ako		Longitudinal Bars (4.75mm)	Number of Main bar		32	2	
Bre		(4.751111)	Total Weight	32*31*20	33	25.032	kg
als	age	Cement	Cement Bag Per Unit Volume	8	34		bag/m ³
Materials Breakdown (B.O.Q.)	and		Net Cement Quantity (Bag)	24*34	35	4	bag
Ма	Tie Bandage	Sand	Sand Bag Per Unit Volume	12	36		bag/m ³
Σ	F		Net Sand Quantity (Cement Bag)		37	6	bag
			Aggregate Bag Per Unit Volume	25	38		bag/m ³
		Aggregate (10 mm	Aggregate bag Fer Unit volume				

Estimate for Correction Mea

Description of existing building:

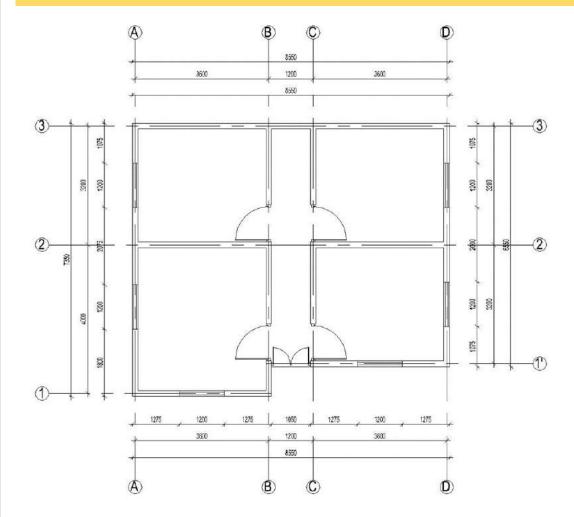
Other details are same as previous except passge in the middle as shown in plan below:

[d] Four Roomed Building with Passage (4R+P model)

[d] Abstract of Cost

ost	ltems	Quantity	Calculation	Unit Rate (NRs.)	Amount	Unit
	GI wire(1.63 Dia)	124	25	180	22374.601	kg
of Co	Cement	19	35+27	750	14338.399	bag
act o	Sand	91	29+37	70	6352.731	bag
Abstra	Longitudinal Bars (4.75mm)	29	32	85	2468.06	kg
4	Aggregate (10 mm down chips)	16	39	100	1555.5	bag
		47,089.29				

[d] Estimate for Correction Measures


Г.

			Estimate for Correct	on Measures			
	uo		Length of Building		1	8.55	m
	Building Overall Dimension		Width of Building		2	6.55	m
	Dim		Height of Building		3	2.16	m
	rall	Plinth	Number of Long Wall		4	3	number
	Ove		Number of Short wall		5	4	number
	ling		Total Area of Building	1*4+2*5	6	51.85	m ²
	Builc		Total Area of Walls (Elevation)		7	111.996	m ²
ťy			Number of Window			6	number
anti			Length of Window		9	1.2	m
Qu	Ę	Window	Height of Window		10	1.2	m
and	Opening Deduction		Area of Window	8*9*10	10	8.64	m ²
ling			Number of Door	0 0 10	12	5	number
uilc			Length of Door		13	1.05	m
of B	enir	Door					
Measuremnt of Building and Quantity			Height of Door		14	2.06	m
urer			Area of Door	12*13*14	15	10.815	m²
easi			Total Area (Deductable)	11+15	16	19.455	m²
Š	Net Area		Single Face of Walls	7-16	17	92.541	m²
	Net	Wall Area	Double Face of WallS	17+17	18	185.082	m²
	Tie bandage		Length [One side)	4*1+5*2	19	51.85	m
			Length (Two side)	19+19	20	103.7	m
			Thickness		21	0.04	m
	ba		Height of Bandage		22	0.15	m
	ĭĔ		Total Volume	19*21*22	23	0.3111	
			Total Volume of Tie Bandage	23+23	24	0.6222	m ³
		GI wire(1.63 Dia)	Weight Per Unit Area	0.7	25		kg/m ²
	Wall Jacketing		Total Weight	25*18	26	124	kg
	cke	Cement (1 Part)	Cement Bag Per Unit Area	0.0764	27		bag/m ²
(;	Ja	Cement (Tran)	Net Cement Quantity (Bag)	27*18	28	14	bag
0.0	Wal	Sand (6 part)	Sand Bag Per Unit Area	0.45	29		bag/m ²
n (B	-		Net Sand Quantity (Cement Bag)	29*18	30	83	bag
Nor			Weight Per Unit Length	0.14	31		kg/m
eakc		Longitudinal Bars (4.75mm)	Number of Main bar		32	2	
Bre	0	(4.701111)	Total Weight	32*31*20	33	29.036	kg
Materials Breakdown (B.O.Q.)	Tie Bandage	Cement	Cement Bag Per Unit Volume	8	34		bag/m ³
ater	anc		Net Cement Quantity (Bag)	24*34	35	5	bag
Ŝ	ie B	Sand	Sand Bag Per Unit Volume	12	36		bag/m ³
			Net Sand Quantity (Cement Bag)	36*24	37	7	bag
		Aggregate (10 mm	Aggregate Bag Per Unit Volume	25	38		bag/m ³
		down chips)	Net Agg. Quantity (Cement Bag)	38*24	39	16	bag

Description of existing building:

Other details are same as previous except passage and verandah in the middle as shown in plan below:

e. Four Roomed Building with Passage and Veranda (4R+P+V model)

[e] Abstract of Cost

	ltems	Quantity	Calculation	Unit Rate (NRs.)	Amount	Unit
ost	GI wire(1.63 Dia)	134	25	180	24045.787	kg
ů,	Cement	20	35+27	750	15360.914	bag
ct o	Sand	97	29+37	70	6820.443	bag
Abstra	Longitudinal Bars (4.75mm)	31	32	85	2620.38	kg
	Aggregate (10 mm down chips)	17	39	100	1651.5	bag
			Total	Amount (NRs.)	50,499.02	

[e] Estimate for Correction Measures

			Estimate for Correct	ion Measures			
	u		Length of Building		1	8.55	m
	ensi		Width of Building		2	7.35	m
	Dime		Height of Building		3	2.16	m
	rall	Plinth	Number of Long Wall		4	3	number
	Ove		Number of Short wall		5	4	number
	ding		Total Area of Building	1*4+2*5	6	55.05	m ²
	Building Overall Dimension		Total Area of Walls (Elevation)		7	118.908	m ²
tity			Number of Window		8	6	number
uant			Length of Window		9	1.2	m
d Qi	luction	Window	Height of Window		10	1.2	m
g an			Area of Window	8*9*10	11	8.64	m ²
ldinç	Ded		Number of Door		12	5	number
Buil	a Opening Deduction	Door	Length of Door		13	1.05	m
Measuremnt of Building and Quantity			Height of Door		14	2.06	m
rem			Area of Door	12*13*14	15	10.815	m²
asu			Total Area (Deductable)	11+15	16	19.455	m²
Me	Net Area		Single Face of Walls	7-16	17	99.453	m²
	Net	Wall Area	Double Face of WallS	17+17	18	198.906	m²
	ge		Length [One side)	4*1+5*2	19	55.05	m
			Length (Two side)	19+19	20	110.1	m
	nda		Thickness		21	0.04	m
	Tie bandage		Height of Bandage		22	0.15	m
	ĭĔ		Total Volume	19*21*22	23	0.3303	
			Total Volume of Tie Bandage	23+23	24	0.6606	m ³
		GI wire(1.63 Dia)	Weight Per Unit Area	0.7	25		kg/m ²
	ting		Total Weight	25*18	26	134	kg
	cke	Cement (1 Part)	Cement Bag Per Unit Area	0.0764	27		bag/m ²
(;	Wall Jacketing		Net Cement Quantity (Bag)	27*18	28	15	bag
B.O.Q.)	Wal	Sand (6 part)	Sand Bag Per Unit Area	0.45	29		bag/m ²
_			Net Sand Quantity (Cement Bag)	29*18	30	90	bag
yob		Longitudinal Bars	Weight Per Unit Length	0.14	31		kg/m
eak		(4.75mm)	Number of Main bar		32	2	
Materials Breakdown	Ð	. ,	Total Weight	32*31*20	33	30.828	kg
rials	dag	Cement	Cement Bag Per Unit Volume	8	34		bag/m ³
late	Tie Bandage		Net Cement Quantity (Bag)	24*34	35	5	bag
Σ	Tie	Sand	Sand Bag Per Unit Volume	12	36		bag/m ³
			Net Sand Quantity (Cement Bag)	36*24	37	8	bag
		Aggregate (10 mm	Aggregate Bag Per Unit Volume	25	38		bag/m ³
		down chips)	Net Agg. Quantity (Cement Bag)	38*24	39	17	bag

This Page is Intentionally Left Blank

ANNEX D: CASE STUDY ON INSPECTION

This section presents representative sample calculation referred in structural analysis and design of existing building as well as new buildings.

Single Storey HCB Building

CASE STUDY - 1

BUILDING DESCRIPTION

- Single storey building with CGI roofing. Rooms sizes vary; 2 Rooms to 4 Rooms including verandah at front and corridor inside.
- Masonry units are concrete blocks (solid, hollow, ACC) with baked bricks.
- Vertical RC post [concrete M15, 230mmx230mm, rebars Fe 415MPa, 4 Nos. of 12 mm diameter tied with stirrups 8 mm diameter at 150 mm c/c] are provided at each junction of rooms and at various locations in verandah.

Building Typology

Reinforced Masonry Structural Wall
 System

Structural Assessment check list

 \checkmark Building site : C : **C** \checkmark **Building configuration** \checkmark Storey height : C Unit size 400x150x200,LBH : C Foundation : **C** Vertical reinforcement : C Plinth band : NC Un supported wall length : <u>C</u> \checkmark Openings in wall : <u>C</u> **Openings** location : **C** \checkmark Horizontal reinforcement : NC \checkmark Horizontal bands : NC Gable walls : <u>NC</u> \checkmark \checkmark Roofing : <u>C</u>

Non-Compliance Issue

 According to the analysis, seismic requirement is not satisfied due to missing horizontal bands at plinth, sill, lintel, roof or gable.

Recommendation

 Correction method is introduced in this manual. Horizontal bands shall be provided at both side of wall.

*See Correction Measures,

Single Storey HCB Building

BUILDING DESCRIPTION

- Single storey building with CGI roofing.
- Hollow square pipe is used at wall crossings and rebars near openings

Building Typology

Reinforced Masonry Structural Wall System

Non-Compliance Issue

None.

: <u>C</u>

: C

: **C**

: <u>C</u>

: C

- Structural Assessment check list
- \checkmark **Building site**
- \checkmark Building configuration
- \checkmark Storey height
- Unit size 400x150x200,LBH : C \checkmark
- \checkmark Foundation
- \checkmark Vertical reinforcement : C
- \checkmark Plinth band
- \checkmark Un supported wall length : C : C
- \checkmark Openings in wall
- \checkmark Openings location : C : C
- \checkmark Sill bands
- Gable walls \checkmark : NK : C
- \checkmark Roofing

Recommendation

Inspection be done can as concrete block masonry presented in this manual.

Single Storey HCB Building

CASE STUDY - 3

BUILDING DESCRIPTION

- > Two storey building with CGI roofing. Room sizes vary; 3 Rooms with verandah at front.
- Masonry units are concrete blocks (solid or hollow).
- Single rebars are used at critical location and RC post at verandah.

Building Typology

Reinforced Masonry Structural Wall
 System

Non-Compliance Issue

 According to the analysis, seismic requirement is not satisfied due to missing horizontal bands at plinth, sill, lintel, roof or gable.

Recommendation

 Correction method is introduced in this manual. Horizontal bands shall be provided at both side of wall.

Remarks

Str	Structural Assessment check list						
\checkmark	Building site	: <u>C</u>					
\checkmark	Building configuration	: <u>C</u>					
\checkmark	Storey height	: <u>C</u>					
\checkmark	Unit size 400x150x200,LBH	: <u>C</u>					
\checkmark	Foundation	: <u>C</u>					
\checkmark	Vertical reinforcement	: <u>C</u>					
\checkmark	Plinth band	: <u>NC</u>					
\checkmark	Un supported wall length	: <u>C</u>					
\checkmark	Openings in wall	: <u>C</u>					
\checkmark	Openings location	: <u>C</u>					
\checkmark	Horizontal reinforcement	: <u>NC</u>					
\checkmark	Horizontal bands	: <u>NC</u>					
\checkmark	Gable walls	: <u>NC</u>					

✓ Floor/Roofing

: <u>C</u>

Double Storey HCB Building with Light Roofing

CASE STUDY - 4

BUILDING DESCRIPTION

- > Two storey with CGI roofing building rooms sizes varies; 3 Room with verandah at front.
- > Masonry units are infilled in timber frames. Resistance to loads is provided by combined action of frame and infilled blocks.

Structural Assessment check list

- \checkmark **Building site** : C \checkmark **Building configuration** : C Storey height \checkmark : C \checkmark Unit size 400x150x200,LBH : C Foundation : C Vertical reinforcement \checkmark : <u>C</u> **Plinth band** : NC \checkmark Un supported wall length : <u>C</u> \checkmark Openings in wall : **C** \checkmark **Openings** location : C Horizontal reinforcement : NC
- Horizontal bands : NC
- Gable walls \checkmark : <u>NC</u>
- Roofing

Building Typology

Reinforced Masonry Structural Wall System

Non-Compliance Issue

According to the analysis, seismic requirement is not satisfied due to missing horizontal bands at plinth, sill, lintel, roof or gable.

Recommendation

Use simplified calculation of brace [Refer: member, Light Timber/Steel Frame Structure Manual]

Remarks

: C

Hybrid Structure

CASE STUDY - 5

BUILDING DESCRIPTION

- Two storey building with CGI roofing and verandah at front.
- > This building is HYBRID STRUCTURAL SYSTEM as **lower storey is Reinforced masonry** structural wall system and upper storey is Light timber structure.
- > Lower storey can be inspected as reinforced masonry structural wall system stated in this manual and upper story can be inspected as hybrid structure [refer hybrid manual]. For correction, HCB Manual or Hybrid Structure Manual shall be applied.

Structural Assessment check list

: C

- \checkmark **Building site**
- **Building configuration** : **C** \checkmark : **C**
- \checkmark Storey height
- \checkmark Unit size 400x150x200,LBH : C : **C**
- \checkmark Foundation
- \checkmark Vertical reinforcement : C : **C**
- \checkmark Horizontal banding
- \checkmark Un supported wall length : **C**
- \checkmark Openings in wall : <u>C</u> : C
- \checkmark **Openings** location
- **Hybrid Structure** \checkmark : NC Roofing : <u>C</u>

Building Typology

Hybrid Structure

Non-Compliance Issue

CGI sheet partition and connection of upper floor to lower floor.

Recommendation

Use simplified calculation of brace member, [Refer: Light Timber/Steel Frame Structure Manual]

Hybrid Structure [SMC + HCB]

CASE STUDY - 6

BUILDING DESCRIPTION

- Two storey building with CGI roofing and verandah at front.
- This building is mixed in type as lower storey is Reinforced stone masonry and upper storey is Concrete block masonry.
- Lower storey can be inspected as SMM and upper storey can be inspected as concrete block as stated in this manual.

Structural Assessment check list

: **C**

: **C**

: C

: C

: C

: C

: **C**

- ✓ Building site
- ✓ Building configuration : C
- ✓ Storey height
- ✓ Unit size 400x150x200,LBH : **C**
- ✓ Foundation
- ✓ Vertical reinforcement
- ✓ Horizontal banding
- ✓ Un supported wall length : <u>C</u>
- ✓ Openings in wall : <u>C</u>
- Openings location
- ✓ Roofing

Building Typology

Hybrid Structure

Non-Compliance Issue

 Use of different material at different level (Stone in Cement and HCB in Cement)

Recommendation

• Apply MR of SMC and HCB Masonry.

HCB Infilled Timber Frame Structure Building

CASE STUDY - 7

BUILDING DESCRIPTION

- Two storey building with CGI roofing and timber flooring.
- The masonry walls are infilled in timber frame at lower storey and timber planks are fixed in upper storey of the building.

Building Typology

HCB Infilled Timber Frame Structure

Non-Compliance Issue

• HCB masonry partitioned wall are not tied with timber frames

Recommendation

 Inspection of this building can be done as per Light Timber/Steel Frame Structure Manual.

Double Storey HCB Building with Light Roofing

CASE STUDY - 8

BUILDING DESCRIPTION

- Two storey building with CGI roofing and verandah at front. \triangleright
- RC posts (4-12 dia bars, 8 mm stirrups @150mm c/c) are provided at \geq each corners of room.
- RC beam (4-12 dia bars, 8 mm stirrups @150mm c/c) are provided at \geq floor/room bands.

Structural Assessment check list

- **Building site** \checkmark : **C** \checkmark Building configuration : **C** Storey height \checkmark : C Unit size 400x150x200,LBH : C \checkmark \checkmark Foundation : C Vertical reinforcement : **C Plinth band** : NC \checkmark Un supported wall length : C \checkmark **Openings** in wall : **C** \checkmark **Openings** location : **C** Horizontal reinforcement : NC
- Horizontal bands : NC
- Gable walls
- Floor/Roofing

Building Typology

These buildings are Confined masonry structural wall system.

Non-Compliance Issue

 According to the analysis, seismic requirement is not satisfied due to missing confining element near openings

Recommendation

Correction method is introduced in this manual. Horizontal bands at sill and lintel level and vertical bands shall be provided near opening.

Remarks

: <u>NC</u>


: <u>C</u>

Double Storey HCB Building with Light Roofing

CASE STUDY - 9

BUILDING DESCRIPTION

- Single storey with CGI roofing building with verandah at front.
- Confining element at required locations.

Building Typology

These buildings are Confined masonry structural wall system.

Non-Compliance Issue

According to the analysis, seismic requirement is not satisfied due to missing confining element near openings

Recommendation

Inspection of these building typology shall be done according to INSPECTION FORM for Confined Masonry Building

Remarks

Structural Assessment check list

: C

: C

: C

: **C**

: <u>C</u>

: <u>C</u>

- \checkmark **Building site** \checkmark **Building configuration**
- \checkmark Storey height
- \checkmark Unit size 400x150x200,LBH : C
- \checkmark Foundation : C
- \checkmark Vertical reinforcement : **C** : C
- \checkmark Plinth band
- \checkmark Un supported wall length : <u>C</u> : C
- \checkmark Openings in wall
- \checkmark **Openings** location
- \checkmark Horizontal reinforcement : C : <u>C</u>
- \checkmark Horizontal bands
- \checkmark Gable walls
- Roofing

HCB Infilled RC Frame Structure Building

CASE STUDY - 10

BUILDING DESCRIPTION

- Masonry infilled RCC framed structure, gravity and lateral loads are resisted by frame.
- Infills should be stable in its plane against out of plane loads

Building Typology

These buildings are Reinforced
 Concrete Framed Structure with
 Masonry Infill

Non-Compliance Issue

• N/K

Recommendation

Inspection of these building typology shall done according be to INSPECTION FORM for RCC longitudinal BUILDING. Except, rebar in bands can be 2- 6mm diameter with C-hooks 4.75mm diameter @ 150 mm at centers.

This Page is Intentionally Left Blank

ANNEX E: INSPECTION FORM (HCB MASONRY)

This section presents Inspection forms for HCB Load Bearing Buildings.

First Inspection Form

अनुशूची २१: - सिमेन्ट मसलाको जोडाइम कंक्रिट ब्लकको गरोवाला "ग" वर्गको घरको प्राबिधिक निरीक्षण फारम

नेपाल सरकार राष्ट्रिय पुनर्निर्माण प्राधिकरण केन्द्रीय परियोजना कार्यन्वयन इकाई (भवन)

1991 - S	घरधनी / लाभ	ग्राहीको जानकारी		निरीक्षण मितिः	गते	महि	ना	वर्ष
नामः				अनुदान म्फ्रौता नं.				
ठेगानाः	जिल्लाः	गा.वि ∕ न.प	ग.ः	वडाःटोलः	স	गाको	कित्ता न	ť.:
फोन	ा १ / मोबाइल नंः-	अन्दान म	- भौतामा उल्ले	खित बैंक खाता नं:-		बैंकव	गे नाम	:-
खण्ड -१	ःघरको जाचको ल	ागि दिइएको आवेद						
	शा-डिजाइन मध्येको भए			डिजाइन नं:				
अन्य आफ्नै	नक्शा डिजाइन भए		निर्माण र	ामाग्री र प्रविधि				
अनुदान सर	सम्भौतामा दिइएको घरक	गे विवरण	छाना र व	सामाग्रीको निर्माण				
प्राविधिक	सहायक 🗌 छ	🗌 छैन	संस्था		□ने	पाल सरव	गर □ गैरन	सरकारी संस्था
	🗌 छ	🗌 छैन	माटोको '	प्रकार	<u>ि</u> क	ज्डा □ मध	यम⊡नरः	н
खण्ड - <u>२</u>	ः विस्तृत प्राविधिव	ववरण						
								टिप्पणी
न्यूनतम	वर्गिकरण		विवर	रण		न्यून माप		ाटप्पणा
मापदण्						पाल		
ड कम								
नं						ন্ত	छैन	
		भौगर्भिक चिरा प	ारेको ठाउँ ।					
	निर्माण स्थलको	भिरालो क्षेत्र > २	o° ۱					
0	छनोट	नदीको बगर वा	सिमसार ठाउँ	l				
٩	निम्न स्थान	ढुङ्गा भर्ने ठाउँ ।						
	बाट टाढा	तरलीकरण हुन र	सक्ने ठाउँ ।					
	हुनुपर्छ ।	माटो भरेको वा '	पुरुवा माटो भ	एको स्थान				
	भवनको	तल्ला संख्या	२					
	आकार प्रकार	गारोको लम्बाइ	बढीमा ४.०	५ मि.				
२	र नाप	भुइको नाप	बढीमा १००	.०० वर्ग.मि.				
		अनुपात	वर्गकार वा	आयातकार । लम्बाई				
			चौडाइको ३	गुणा भन्दा बढी हुनुहुँदै	न् ।			
		कंकिट ब्लक	Minimum compr 400mm*150mm*	essive strength shall be 2MPa, Si *200mm	ze:			
			i	ग सिमेन्ट र ६ भाग				
			बालुवा) वरा	वर अथवा त्यो भन्दा	बढी			
३	निर्माण सामाग्री	मसला	भार क्षमता					
			M २० ग्रेड	M १:१.४:३ (१ भाग				
		कंकिट ग्रेड	सिमेन्ट १.४	भाग बालुवा र ३ भाग गिर्ट	. . .			
		डण्डी						

First Inspection Form

न्यूनतम मापदण् ड क्रम नं	वर्गिकरण		विवरण	न्यूनतम मापदण्ड पालना गरिएको		टिप्पणी
1				छ	छैन	
		एकैनासको गारो वाल				
			१ तल्ला : ४५० मि.मि.			
8		जगको गहिराइ	२ तल्ला : ६४० मि.मि.			
			१ तल्ला : ४५० मि.मि.			
	जग	जगको चौडाइ	२ तल्ला : ६४० मि.मि.			
		जगबाट शुरु हुनुपर्छ ।				
			ा र भयाल ढोकाको दायाँ बायाँ			
X		राखेको हुनुपर्छ ।				
	ठाडो	ठाडो डण्डी	१२ मि.मि. न्युनतम			
	सबलीकरण	खप्टयाउने लम्बाई	६० गुणा डण्डीको ब्यास			
		जमिन सतह माथिको				
		उचाइ	कम्तीमा ३०० मि.मि.			
		मोटाइ	७५ मि.मि.।			
∙ور)		चौडाइ	१४० मि.मि.।			
۲			२–१२ मि.मि.)ब्यासको डण्डी । ६			
	कुर्सी सतह		मि.मि. ब्यासको रिङ्ग १४० मि.मि.			
	(डि.पि.सि)		दूरीमा, १४ मि.मि. (कभर) ढलान			
		डण्डी र रिङ्ग	1			
अन्य						
अगाडिको मोहडा (Front		पद्धांडको मोहडा (Back view):	(ग) घरको मोठामोठी त्रका			
वार्या साइड (Righ माधिको दृश्य (T (ख) जि.पि.एस्. को–अडिंगे		वायां साइड (Left side view): साइटको नक्सा (Site Plan): देशालर:	समग्र मततवार उजाइ			
(घ) देखिएका प्राविधिक विव अनुसार सुधार÷प्रवलीकरण	रणहरुको विश्लेषण गरी निर्माण भइसकेका घरमा थप सुधार । आदेश विङ्ग्को छ ।	कार्यको राय-सुभगव दिनु पर्ने: 🗆 देखिन्छ, 🗆 देखिरैन				
यो घर मैले आफै बनाएको घरधनी ÷लाभग्राही वा प्रति	हुं र वसको गुणस्तर तथा सुरधाको सम्पूर्ण जिम्मेवारी म आ निधिको नाम, थर		तव अनुसान मुक्लानी प्रयोजनका लागि माथ लागु हुनेछ भन्ने व्यतोग मलाई मंजूर छ । साथै			
प्रतिनिधिको घरधनी 🕂 साभग	ग्राहीसंगको नाता	ন্ত্ৰেগাৰ্বায়ক লাখকা বিৰুদ্য MoUD-DLPIU কা মৃথ নাম				
पद 	हस्ताधरः	ामतः	हरनाधर. [मंति:			

Second Inspection Form

अनुशूची २१: - सिमेन्ट मसलाको जोडाइम कंक्रिट ब्लकको गरोवाला "ग" वर्गको घरको प्राबिधिक निरीक्षण फारम

नेपाल सरकार राष्ट्रिय पुनर्निर्माण प्राधिकरण केन्द्रीय परियोजना कार्यन्वयन इकाई (भवन)

994										
	घरध	1ी ∕ लाभ	ग्राहीको जानकारी		निरीक्षण मितिः	गते	महि	ग	वर्ष	
नामः					अनुदान म्फ्रौता नं.					
जिल्लाः गा.वि⁄न.पा.ः ठेगानाः					वडाःटोलः	ज	ग्गाको	कित्ता न	İ.:	
फोन	न / मोबाइ	ल नंः-	अनुदान म्भौ	तामा उल्ले	खित बैंक खाता नं:-		बैं कव	को नाम	:-	
खण्ड −१	ःघरको जा	चको ल	ागि दिइएको आवेदनमा	। भएको वि	वरण					
स्वीकृत नव	क्शा-डिजाइन म	ध्येको भए			डिजाइन नं.:					
अन्य आफ्नै	नक्शा डिजाइन	न भए		निर्माण स	ामाग्री र प्रविधि					
अनुदान सन	सम्भौतामा दिइ	एको घरक	गे विवरण	छानार र	सामाग्रीको निर्माण					
प्राविधिक	सहायक	🗌 छ	🗌 छैन	संस्था		Ē	ापाल सरव	कार⊡गैर	सरकारी संस्था	
		🗌 छ	🗌 छैन	माटोको प्र	प्रकार	<u></u> a	न्डा 🗌 मध	यम⊡नर	н	
ৰুण্ड -२	ः विस्तृत '	प्राविधिव	व्व वरण							
न्यूनतम	वर्गिक	रण		विवर	विवरण			न्यूनतम		
मापदण		``					मापदण्ड			
ड क्रम							पाल			
नं							गरि।	एका छैन		
				<u></u>			छ			
			गारोहरु घन्टी मिलाएर	-	3					
			मोटाई		तल्ला : कम्तीमा १४० मि.					
৩		_) जोर्नी		मि. मि.भन्दा बढी र १० मि	ſ.				
	गारो				मि.भन्दा कम हुनुहुँदैन ।					
			आड दिने गारो		धैरै लामो गारोमा प्रदान गरिएको					
			चूली गारो		का सामाग्रीको प्रयोग गरिए	का				
				गार मि.	ोको सुरवाट कम्तिमा ६०० जे					
-		\	स्थान		म. ह गारोको लम्बाईको कम्ति	п				
5	गारोमा रागि खुल्ला भाग		कुल लम्बाई		ह गाराका लम्बाइका काम्स ४ भन्दा बढी हुनु हुँदैन ।	ना				
	खुल्ला माग		पुरा सम्पाइ दूरी		<u>ः माथा अक्षा हुनु हुका ।</u> तमा ६०० मि.मि.					
	तेर्सो बन्धन	<u>г</u>	<u>ूरा</u> सिल पटीको नाप		ामा ५०० मि.ाम. गारो वरिपरी पहीको प्रयोग					
९		•	(भुयालको तल्लो सतह)		तमा ७१ मि.मि.					
				/	<u>, , , , , , , , , , , , , , , , , , , </u>					

Second Inspection Form

				न्यून	ਰਜ	टिप्पणी
न्यूनतम	वर्गिकरण		म्यून मापव		ाटप्पणा	
मापदण				माप पाल		
ड क्रम				नाल गरिए		
नं				छ	्प्र छैन	
			सबै गारो वरिपरी पटीको प्रयोग	8	55.1	
			सुब गारा पारपरा पटाका प्रयोग यदि खुल्ला भागको चौडाई १.२४			
			पार खुल्ला मागपत्र जाडाइ 1.२२ मि. र यस माथिको गारोको उचाई			
		लिन्टेल पटीको नाप	०.९ मि. भन्दा बढी भए ७५			
		(भर् याल ढोकाको माथि ल्लो	मि.मि.भन्दा कम हुनुहुँदैन। यदि			
		स्तह)	खुल्ला भागको चौडाई श्र १.२४ मि.र			
			यस माथिको गारोको उचाई १.२			
			मि. भन्दा बढी भए १४०			
			मि.मि.भन्दा कम हुन्हँदैन।			
			बढीमा सुर र जोर्नीमा ६०० मि.			
९		स्टीच पटीको नाप	लम्बाई कम्तिमा ७५ मि.मि. मोटाई।			
	तेर्सो बन्धन		सबै गारो वरिपरी पटीको प्रयोग			
		छानाको पटीको नाप	कम्तिमा ७५ मि.मि.			
			१५०मि.मि.मोटाइको पटीमा ४–			
			१२मि.मि. ब्यासको डण्डी र ७५			
			मि.मि. मोटाईको पटीमा २–१२			
			मि.मि. व्यासको डण्डी । ६ मि.मि.			
			ब्यासको रिङ्ग १४० मि.मि.) दूरीमा,			
		पटीको नाप, डण्डी र रिङ्ग	२५ मि.मि. (कभर) ढलान ।			
		डण्डीको खप्ट्याउने लम्बाई	६० गुणा) डण्डीको व्यासको लम्बाई			
१०	गारो	चूली गारो	हलुका सामाग्रीको प्रयोग गरिएको			
		सामग्री	हलुका छाना प्रयोग गरिएको			
			एकआपसमा र गारो सँग उपयूक्त			
99		जोडाई	तरिकाले बाँधेका			
			ट्रस वा दलिनहरु बाँध्न छड्के			
	छाना	छड्के तान	तानको प्रयोग			

अन्य				
(क) घरको कम्तीमा छवटा फोटोहरु खित्री फोटो नं.हरु उ	लेख गर्ने (जस्तै : dsc0152.jpg) फोटो फाइलको नाम			(ग) घरको मोटामोटी नक्शा:
अगाडिको मोहडा (Front view):	पछाडिको मोहडा (Back view):			
वायां साइड (Right side view):	वायां साइड (Left side view):			
माविको दृश्य (Top view):	साइटको नक्शा (Site Plan):			
(ख) जि.पि.एस्. को-अडिंनेट: अक्षांश:	देशान्तर.	समृत्य्र सतहबाट उत्राइ		
(ध) देखिएका प्राविधिक विवरणहरुको विश्लेषण गरी निर्माण सुधार ÷ प्रवलीकरण गर्नुपर्ने देखिएकोले अनुसूत्री - ११ अनु	भइसकेका घरमा थप सुधार कार्यको राय- सुभ्जाव दिनु पर्नेः □ देखिन्छ □ सार सुधार÷प्रवसीकरण आदेश दिइएको छ ।	देखिदैन		
		नाभग्राही घरधनीलाई विइने निजी आवास अनुवान भुक्तानी प्रयोजनका लागि	मात्र लागु हुनेछ भन्ने व्यहोरा मलाई मंजूर छ । साथै	
	॥को सम्पूर्ण जिम्मेवारी म आफै लिनेछु भनी स्वीकार गर्ने :			
घरधनी — लाभग्राही वा प्रतिनिधिको नाम, थर प्रतिनिधिको घरधनी — लाभग्राहीसंगको नाता				
(त्र) प्राविधिक जॉन्नको विवरण स्वीकृतिको लागि पेश गर्ने:		(छ,प्राविधिक जॉचको विवरण स्वीकृत गर्ने		
MoUD-DLPIU को सुपरीवेशक:		MoUD-DLPIU को सुपरीवेक्षण इञ्जिनियर		
नाम:				

Third Inspection Form

अनुशृ निरीक्ष	ची २१: - जि णि फारम	सेमेन्ट म	।सलाको जोउ			को गरोवाला "ग" वर्गक	ो घरव	गे प्राबि	धिक		
	नेपाल सरकार राष्ट्रिय पुनर्निर्माण प्राधिकरण केन्द्रीय परियोजना कार्यन्वयन इकाई (भवन)										
	South State		47 XI		9719.9	14 1 24/12 (114 1)					
	घरधन	ी ∕ लाभ	ग्राहीको जानव	कारी		निरीक्षण मितिः	गते	महि	ना	वर्ष	
नामः						अनुदान म्फ्रौता नं.					
ठेगानाः	जिल्लाः		गा.वि.	. / न.पा.:		वडाःटोलः	স	गाको	कित्ता [']	नं.:	
फोग	न / मोबाइ	ल नंः-	अनुव	दान म्भौतामा	। उल्ले	खेत बैंक खाता नं:-		बैं कव	ने नाग	र :-	
ৰুण্ड -৭	ःघरको जा	चको ल		आवेदनमा भए							
	शा-डिजाइन म					डिजाइन नं.:					
अन्य आफ्नै	नक्शा डिजाइन	न भए		रि	नेर्माण सा	माग्री र प्रविधि					
अनुदान सन	सम्भौतामा दिइ	एको घरके	ा विवरण	<u></u>	छाना र सामाग्रीको निर्माण						
प्राविधिक	सहायक	🗌 छ	🗌 छैन	स	नंस्था		□ ने	पाल सरव	गर □ गै	रसरकारी संस्था	
		🗌 छ	🗌 छैन	Ŧ	गटोको प्र	टोको प्रकार 🗌 व			यम⊡न	रम	
खण्ड -२	ः विस्तृत प	प्राविधिक	विवरण								
न्यूनतम	वर्गिक				विवर	TT.		न्यून	तम	टिप्पणी	
मापदण	वागक	रण			। ववर	ul		माप	दण्ड		
ड कम			पालना								
् न नं							गरिष	ŕ			
								ন্থ	छैन		
१०	गारो		चूली गारो		हलुक	न सामाग्रीको प्रयोग गरिए	एको				
			सामग्री		5	न छाना प्रयोग गरिएको					
						गपसमा र गारो सँग उपयू	क				
99			जोडाई		-	गले बाँधेका					
						वा दलिनहरु बाँध्न छड्के सो प्रयोग					
	छाना		छड्के तान		तानव	को प्रयोग					

अन्य					
(क) घरको कम्तीमा छवटा कोटोहरु खित्री कोटो नं.हरु उ	ल्लेख गर्ने (जस्तै : dsc0152.jpg) कोटो फाइलको नाम				(ग) घरको मोटामोटी नक्शा:
अगाडिको मोहडा (Front view):	पछाडिको मोहडा (Back view):				
वार्या साइड (Right side view):	वायां साइड (Left side view):				1
माधिको दृश्य (Top view):	साइटको नक्शा (Site Plan):				
 (ख) जि.पि.एस्. को-अडिनेट: अक्षांश: 	देशान्तर:		समृत्य सतहबाट उचाइ		
(घ) देखिएका प्राविधिक विवरणहरुको विश्तेषण गरी निर्मा सुधार ÷ प्रवतीकरण गर्नुपर्ने देखिएकोले अनुसूची - ११ अग्	ग भइसकेका घरमा थप सुधार कार्यको राय-सुभगव दिनु पर्नेः □ देखिनछ □ दे तुसार सुधार÷प्रवलीकरण आदेश दिइएको छ ।	ধিইন			
	। यो प्राविधिक निरीक्षण र सिफारिस नेपाल सरकारवाट भूकम्प प्रभावित लाभ	ग्राही घरधनीलाई विइने निजी आव	बस अनुदान भुक्तानी प्रयोजनका लागि म	ात्र लागु हुनेछ, भन्ने व्यहोरा मलाई मंजूर छ । साथै	1
	धाको सम्पूर्ण जिम्मेवारी म आफै लिनेखु भनी स्वीकार गर्ने :				
घरधनी —े लाभग्राही वा प्रतिनिधिको नाम, थर					
(ञ) प्राविधिक जीवको विवरण स्वीकृतिको लागि पेश गर्ने					
MoUD-DLPIU को सुपरीवेशक:					
नामः पद्दः हस्ताक्षरः		नामः पद	हस्ताधरः	मिति:	

This Page is Intentionally Left Blank

Government of Nepal National Reconstruction Authority Housing reconstruction programme Singhadurbar, Kathmandu Ph. 014200266, 4211103 Email: info@nra.gov.np